# TritonAMDGPUOps ### `amdgpu.buffer_atomic_rmw` (triton::amdgpu::BufferAtomicRMWOp) _Atomic RMW op which reads, modifies, and writes to a scalar base pointer and a tensor offset_ Syntax: ``` operation ::= `amdgpu.buffer_atomic_rmw` $atomic_rmw_op `,` $sem `,` $scope `,` $value `,` $ptr `[` $offsets `]` (`,` $mask^)? (`stride` `=` $stride^)? attr-dict `:` type($result) ``` AMD Buffer atomic RMW operation. Buffer atomics are similar to normal atomics, but access global memory via a scalar base pointer and a tensor of offsets instead of a tensor of pointers. Similar to other buffer ops, the `mask` is a boolean vector that determines if a given element should be processed with the atomic RMW op. Elements with `mask[i] == 0` are dropped (i.e., the atomic is not executed). Similar to TT_AtomicRMWOp: Buffer atomic RMW ops load data at $ptr, do $rmw_op with $val, and store result to $ptr with the specified memory semantics and scope. Atomic RMW ops return the pre-op value if used, otherwise the value is implicitly dropped. Stride is the distance between the beginning of contiguous memory chunks. When performing a RMW, the `stride` is the address difference between the first elements of each row in bytes. Compiler tries to obtain the `stride` when it converts to the buffer ops because it is important for optimizing the cache memory access. Traits: `AttrSizedOperandSegments`, `SameLoadStoreOperandsAndResultEncoding` #### Attributes:
AttributeMLIR TypeDescription
atomic_rmw_op::mlir::triton::RMWOpAttrallowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
sem::mlir::triton::MemSemanticAttrallowed 32-bit signless integer cases: 1, 2, 3, 4
scope::mlir::triton::MemSyncScopeAttrallowed 32-bit signless integer cases: 1, 2, 3
#### Operands: | Operand | Description | | :-----: | ----------- | | `ptr` | ptr | | `offsets` | tensor of 32-bit signless integer values | | `value` | ranked tensor of floating-point or integer or ptr values | | `stride` | 32-bit signless integer | | `mask` | ranked tensor of 1-bit signless integer values | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point or integer or ptr values | ### `amdgpu.buffer_load` (triton::amdgpu::BufferLoadOp) _Load from a scalar base pointer and a tensor offset_ Syntax: ``` operation ::= `amdgpu.buffer_load` $ptr `[` $offsets `]` (`,` $mask^)? (`,` $other^)? oilist(`cacheModifier` `=` $cache) (`stride` `=` $stride^)? attr-dict `:` type($result) ``` AMD Buffer load operation. Buffer store is similar to a normal store but it accesses global memory via a scalar base pointer and a tensor of offsets instead of a tensor of pointers. The other fields are similar to a normal load, i.e., the `mask` is a boolean vector that determines if a given element should be read from memory, and `other` is the element that should be returned on lane `i` when `mask[i] == 0`. Stride is the distance between the beginning of contiguous memory chunks. When performing a load of a block, the `stride` is the address difference between the first elements of each row in bytes. Compiler tries to obtain the `stride` when it converts to the buffer ops because it is important for optimizing the cache memory access. Traits: `AttrSizedOperandSegments`, `SameLoadStoreOperandsAndResultEncoding` #### Attributes:
AttributeMLIR TypeDescription
cache::mlir::triton::CacheModifierAttrallowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7
#### Operands: | Operand | Description | | :-----: | ----------- | | `ptr` | ptr | | `offsets` | tensor of 32-bit signless integer values | | `stride` | 32-bit signless integer | | `mask` | ranked tensor of 1-bit signless integer values | | `other` | ranked tensor of floating-point or integer or ptr values | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point or integer or ptr values | ### `amdgpu.buffer_load_to_local` (triton::amdgpu::BufferLoadToLocalOp) _Load from a scalar base pointer and a tensor offset to shared memory_ Syntax: ``` operation ::= `amdgpu.buffer_load_to_local` $ptr `[` $offsets `]` (`mask` `=` $mask^)? (`other` `=` $other^)? (`stride` `=` $stride^)? oilist(`cacheModifier` `=` $cache) `into` $dest attr-dict `:` type($ptr) `[` type($offsets) `]` type($other) `->` type($dest) ``` AMD Buffer load operation. Similar to amdgpu.buffer_load op but directly wirtes to shared memory instead of into registers. Traits: `AttrSizedOperandSegments` Interfaces: `InferTypeOpInterface` #### Attributes:
AttributeMLIR TypeDescription
cache::mlir::triton::CacheModifierAttrallowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7
#### Operands: | Operand | Description | | :-----: | ----------- | | `dest` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | | `ptr` | ptr | | `offsets` | tensor of 32-bit signless integer values | | `mask` | ranked tensor of 1-bit signless integer values | | `other` | ranked tensor of floating-point or integer or ptr values | | `stride` | 32-bit signless integer | #### Results: | Result | Description | | :----: | ----------- | | `token` | async token type | ### `amdgpu.buffer_store` (triton::amdgpu::BufferStoreOp) _Store into scalar base pointer and a tensor offset_ Syntax: ``` operation ::= `amdgpu.buffer_store` $value `,` $ptr `[` $offsets `]` (`,` $mask^)? oilist(`cacheModifier` `=` $cache) (`stride` `=` $stride^)? attr-dict `:` type($value) ``` AMD Buffer store operation. Buffer store is similar to normal store but it accesses global memory via a scalar base pointer and a tensor of offsets instead of a tensor of pointers. The other fields are similar to a normal store , i.e., the `mask` is a boolean vector that determines if a given element should be written to memory, and `value` is the tensor of elements that should be written on lane `i` when `mask[i] == 1`. Stride is the distance between the beginning of contiguous memory chunks. When performing a block store, the `stride` is the address difference between the first elements of each row in bytes. Compiler tries to obtain the `stride` when it converts to the buffer ops because it is important for optimizing the cache memory access. Traits: `AttrSizedOperandSegments`, `SameLoadStoreOperandsEncoding` #### Attributes:
AttributeMLIR TypeDescription
cache::mlir::triton::CacheModifierAttrallowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7
#### Operands: | Operand | Description | | :-----: | ----------- | | `value` | ranked tensor of floating-point or integer or ptr values | | `ptr` | ptr | | `offsets` | tensor of 32-bit signless integer values | | `stride` | 32-bit signless integer | | `mask` | ranked tensor of 1-bit signless integer values | ### `amdgpu.cond_barrier` (triton::amdgpu::CondBarrierOp) _Conditionally set barriers to synchronize partial threads in a block_ Syntax: ``` operation ::= `amdgpu.cond_barrier` $pred attr-dict ``` condBarrierOp sets barrier instruction only when the given argument is true. This provides a way to synchronize partial threads in a block, deliberately diverges the execution sequences. However, user should guarantee all threads converge at the end by calling condBarrierOp(true) with the remaining threads. Conceptually, this is similar to having an execution barrier inside an if statement. This op allows us to avoid blocking the whole block when suitable to help scheduling. NB. This doesn't set any memory fence. #### Operands: | Operand | Description | | :-----: | ----------- | | `pred` | 1-bit signless integer | ### `amdgpu.extract_slice` (triton::amdgpu::ExtractSliceOp) _Extract slice operation_ Syntax: ``` operation ::= `amdgpu.extract_slice` $source $static_offsets attr-dict `:` type($source) `to` type($result) ``` The "extract_slice" operation enables extracting a slice of a tensor in registers. The "extract_slice" operation supports the following arguments: * source: the base tensor on which to create a view tensor * offsets: offsets into the base tensor at which to create the view Example 1: ```mlir #blocked = #ttg.blocked<{sizePerThread = [1, 8], threadsPerWarp = [4, 16], warpsPerCTA = [4, 1], order = [0, 1]}> #blocked1 = #ttg.blocked<{sizePerThread = [1, 8], threadsPerWarp = [16, 4], warpsPerCTA = [4, 1], order = [0, 1]}> %1 = ttg.convert_layout %0 : tensor<128x128xf16, #blocked> -> tensor<128x128xf16, #blocked1> // create a slice of base tensor %1 with static offsets %2 = amdgpu.extract_slice %0 [0, 0] : tensor<128x128xf16, #blocked1> to tensor<128x32xf16, #blocked1> ``` Example 1 shows how "extract_slice" operation may be used. In this example a new slice of 128x32 is created. "extract_slice" works on tensors with layout where the desired slice has the same layout as the source tensor. "%0" cannot be sliced directly as the resulting slice cannot have the same layout as "%0". Therefore it needs to be converted to a layout suitable for slicing. "#blocked1" layout is appropriate for this as it keeps the sizePerThread the same thus keeping coalescing properties the same. In order to utilize all threads in a warp, "threadsPerWarp" is set to [16,4] for this new layout. This layout conversion carried out before using "extract_slice" ensures slicing still uses all threads efficiently. The size of the slice is determined by the result type. Traits: `AlwaysSpeculatableImplTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
static_offsets::mlir::DenseI64ArrayAttri64 dense array attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `source` | ranked tensor of any type values | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of any type values | ### `amdgpu.in_thread_transpose` (triton::amdgpu::InThreadTransposeOp) _Perform transpose of register values belonging to each threads_ Syntax: ``` operation ::= `amdgpu.in_thread_transpose` $src attr-dict `:` type($src) `->` type($result) ``` This operation performs a layout transpose over values in registers per thread. Specifically, given the input layout's blocked layout, it transposes the two last dimensions(rank-1 and rank-2) along the register dimension of the underlying linear layout. Conversion example: * input layout: blocked layout with sizePerThread=[2, 2], order=[0, 1]. It's linear layout register bases = [[1, 0], [2, 0], [0, 1], [0, 2]] * output layout: same thread and warp bases as in input, register bases = [[0, 1], [0, 2], [1, 0], [2, 0]] This operation enables efficient coalesced loading from HBM with following vectorized writing to shared memory in cases when HBM and shared memory order differ and target AMD hardware does not natively support this transposition. This is a specific variant of ttg.convert_layout and will be converted to ttg.convert_layout when lowering to llvm. We do not want this conversion to be optimized out, because we need to explicitly materialize instructions to transpose within each thread after loading from HBM and before writing to shared memory. Traits: `AlwaysSpeculatableImplTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of floating-point or integer or ptr values | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point or integer or ptr values | ### `amdgpu.instruction_sched_hint` (triton::amdgpu::InstructionSchedHint) _A placeholder op for instruction scheduling hints within a basic block_ Syntax: ``` operation ::= `amdgpu.instruction_sched_hint` attr-dict ``` A placeholder op for instruction scheduling hints applied to instructions within a basic block where the placeholder op is located. This op is primarily intended to be used to adjust instruction scheduling inside the resulting main loop of a `tt.dot` operation. It's easier to identify dot ops at a high level and, thus, to mark intended scheduling regions. The hint ops are eventually lowered into LLVM AMDGPU instruction scheduling primitives, which are meant to control how different kinds of instructions (valu/mfma, global/shared memory, etc.) should interleave for better instruction level parallelism. #### Attributes:
AttributeMLIR TypeDescription
variant::mlir::triton::amdgpu::SchedHintAttrInstruction Scheduling Hints for AMD GPUs
numDsReadsA::mlir::triton::amdgpu::InstCounterAttr
An instruction counter attribute.{{% markdown %}} The attribute holds the number of issued LLVM instructions of a specific kind as well as the data type. {{% /markdown %}}
numDsReadsB::mlir::triton::amdgpu::InstCounterAttr
An instruction counter attribute.{{% markdown %}} The attribute holds the number of issued LLVM instructions of a specific kind as well as the data type. {{% /markdown %}}
numDsWritesA::mlir::triton::amdgpu::InstCounterAttr
An instruction counter attribute.{{% markdown %}} The attribute holds the number of issued LLVM instructions of a specific kind as well as the data type. {{% /markdown %}}
numDsWritesB::mlir::triton::amdgpu::InstCounterAttr
An instruction counter attribute.{{% markdown %}} The attribute holds the number of issued LLVM instructions of a specific kind as well as the data type. {{% /markdown %}}
numGlobalLoadsA::mlir::triton::amdgpu::InstCounterAttr
An instruction counter attribute.{{% markdown %}} The attribute holds the number of issued LLVM instructions of a specific kind as well as the data type. {{% /markdown %}}
numGlobalLoadsB::mlir::triton::amdgpu::InstCounterAttr
An instruction counter attribute.{{% markdown %}} The attribute holds the number of issued LLVM instructions of a specific kind as well as the data type. {{% /markdown %}}
isBufferLoadsAEnabled::mlir::BoolAttrbool attribute
isBufferLoadsBEnabled::mlir::BoolAttrbool attribute
numMMAs::mlir::triton::amdgpu::InstCounterAttr
An instruction counter attribute.{{% markdown %}} The attribute holds the number of issued LLVM instructions of a specific kind as well as the data type. {{% /markdown %}}
### `amdgpu.upcast_mxfp` (triton::amdgpu::UpcastMXFPOp) _Convert an mxfp tensor to bf16/fp16_ Syntax: ``` operation ::= `amdgpu.upcast_mxfp` $src `,` $scale `fp_type` `=` $fp_type attr-dict `:` type($src) `,` type($scale) `->` type($result) ``` Compute the bf16 encoded in the given mxfp number as per https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf Traits: `AlwaysSpeculatableImplTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
fp_type::mlir::triton::ScaleDotElemTypeAttrallowed 32-bit signless integer cases: 0, 1, 2, 3, 4, 5, 6
fastMath::mlir::BoolAttrbool attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of floating-point or integer or ptr values | | `scale` | ranked tensor of floating-point or integer or ptr values | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point or integer or ptr values |