# TritonGPUOps ### `ttg.async_commit_group` (triton::gpu::AsyncCommitGroupOp) _Commit pending async copies into an async group that can be waited on_ Syntax: ``` operation ::= `ttg.async_commit_group` (`tokens` $inputTokens^)? attr-dict ``` Closes the current batch of async_copy_* operations and allows for them to be waited on with `ttg.async_wait`. This is required in order to ensure async copy operations can be waited on. Traits: `VerifyTensorLayoutsTrait` Interfaces: `InferTypeOpInterface` #### Operands: | Operand | Description | | :-----: | ----------- | | `inputTokens` | variadic of async token type | #### Results: | Result | Description | | :----: | ----------- | | `asyncToken` | async token type | ### `ttg.async_copy_global_to_local` (triton::gpu::AsyncCopyGlobalToLocalOp) _Copy data from global memory to local memory asynchronously_ Syntax: ``` operation ::= `ttg.async_copy_global_to_local` $src `,` $result (`mask` $mask^)? (`other` $other^)? oilist(`cacheModifier` `=` $cache | `evictionPolicy` `=` $evict) attr-dict `:` type($src) `->` type($result) ``` This operation copies data from global memory to local memory asynchronously. This is analogue to `tt.load` except the data are copied to local memory pointed to by the memory descriptor instead of a distributed tensor. The rest of the operands are the same as `tt.load`. Contiguity is the maximum number of elements that can be loaded in a single vector with the given layout and mask. This allows op to use `async_copy_global_to_local` even if the alignment cannot be proven based on IR. The data will only be available in local memory after `ttg.async_wait` is issued to wait on the completion of `async_copy_global_to_local`. The async copy operations must be committed using `ttg.async_commit_group` to close the batch and allow for them to be waited on. Traits: `AttrSizedOperandSegments`, `VerifyTensorLayoutsTrait` Interfaces: `InferTypeOpInterface` #### Attributes:
AttributeMLIR TypeDescription
cache::mlir::triton::CacheModifierAttrallowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7
evict::mlir::triton::EvictionPolicyAttrallowed 32-bit signless integer cases: 1, 2, 3
isVolatile::mlir::BoolAttrbool attribute
contiguity::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of ptr values | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | | `mask` | tensor of 1-bit signless integer values | | `other` | floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr | #### Results: | Result | Description | | :----: | ----------- | | `token` | async token type | ### `ttg.async_wait` (triton::gpu::AsyncWaitOp) _Ensure all specified async_copy_* operations are complete._ Syntax: ``` operation ::= `ttg.async_wait` ($asyncToken^)? attr-dict ``` The `async_wait` op waits until at most "num" async copy groups are outstanding without synchronising CTA execution. It takes zero or more `asyncToken` plus an integer `num` that specifies how many async copy groups can remain outstanding after the `async_wait` op is completed. `num = 0` waits until all groups of async copies are complete. This operation does not provide any syncronisation in the CTA, if syncronisation is needed use `ttg.local_barrier` in addition to this operation. Traits: `MemWaitOpTrait`, `VerifyTensorLayoutsTrait` Interfaces: `InferTypeOpInterface` #### Attributes:
AttributeMLIR TypeDescription
num::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `asyncToken` | variadic of async token type | #### Results: | Result | Description | | :----: | ----------- | | `retToken` | async token type | ### `ttg.barrier` (triton::gpu::BarrierOp) _Synchronizes execution and reads/writes to the selected address spaces for all threads in the CTA._ The `barrier` op synchronises the execution and all operations between the selected address spaces for all threads in the CTA. It is used to coordinate communication between threads in the CTA. This operation waits until all threads in the CTA have reached a `barrier` (for syncronisation) and operations between the selected address spaces made by these threads prior to the op are visible to all threads in the CTA. Data hazards between threads accessing the same memory can be avoided by synchronising the specified scope in-between these accesses with a `barrier`. A `barrier` operation only provides syncronisation and memory guarantees on the selected address spaces in the CTA. The mandatory `addrspace` attribute is a bitmask describing which address spaces will be visible when the `barrier` completes: * `none` control-only syncronisation (no memory ordering). * `local` shared-memory operations are complete and visible CTA-wide. * `global_read` global memory reads are complete and visible CTA-wide. * `global_write` global memory writes are complete and visible CTA-wide. * `tensor_read` tensor memory read operations are complete and visible CTA-wide. * `tensor_write` tensor memory write operations are complete and visible CTA-wide. * `all` convenience alias for `["local", "global_read", "global_write", "tensor_read", "tensor_write"]`. Multiple address spaces can be combined (e.g. `local|tensor_write`). `none` cannot be combined with other address spaces. Example: ```mlir ttg.barrier local ttg.barrier local|global_read|global_write ``` Traits: `VerifyTensorLayoutsTrait` #### Attributes:
AttributeMLIR TypeDescription
addrSpace::mlir::triton::gpu::AddrSpaceAttr
### `ttg.convert_layout` (triton::gpu::ConvertLayoutOp) _Convert layout_ Syntax: ``` operation ::= `ttg.convert_layout` $src attr-dict `:` type($src) `->` type($result) ``` Traits: `AlwaysSpeculatableImplTrait`, `SameOperandsAndResultElementType`, `SameOperandsAndResultShape`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of floating-point or integer or ptr values | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point or integer or ptr values | ### `ttg.fp4_to_fp` (triton::gpu::Fp4ToFpOp) _Upcast fp4 (e2m1) to fp_ Syntax: ``` operation ::= `ttg.fp4_to_fp` $src attr-dict `:` type($src) `->` type($result) ``` Upcast fp4 (e2m1) represented packed as i8s to fp. The lower 4 bits of the i8s represent the first fp4 element, and the upper 4 bits the second fp4 element. The `axis` attribute specifies the axis along which the fp4 elements are packed. Traits: `AlwaysSpeculatableImplTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
axis::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of 8-bit signless integer values | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point values | ### `ttg.global_scratch_alloc` (triton::gpu::GlobalScratchAllocOp) _Allocate a global memory buffer_ Syntax: ``` operation ::= `ttg.global_scratch_alloc` attr-dict `:` qualified(type($result)) ``` This operation allocates a buffer in global memory that is private to the current program. The `backend` attribute specifies the backend to use for allocation. The `default` backend is used by TritonGPU passes. Downstream Triton tools and compilers can register a different backend and use a different allocation policy. Traits: `VerifyTensorLayoutsTrait` #### Attributes:
AttributeMLIR TypeDescription
nbytes::mlir::IntegerAttr32-bit signless integer attribute
alignment::mlir::IntegerAttr32-bit signless integer attribute
backend::mlir::StringAttrstring attribute
#### Results: | Result | Description | | :----: | ----------- | | `result` | ptr | ### `ttg.local_alloc` (triton::gpu::LocalAllocOp) _Allocate tensor_ Syntax: ``` operation ::= `ttg.local_alloc` ($src^)? attr-dict `:` functional-type(operands, results) ``` This operation allocates buffer in shared memory and return a descriptor containing the address and a view of the buffer. Explicitly deallocating a buffer is optional; see local_dealloc. The `src` operand is an optional initializer for the allocated buffer. It must have the element type as the buffer. If `src` is not specified, the returned buffer must be mutable. Traits: `VerifyTensorLayoutsTrait` Interfaces: `MemoryEffectOpInterface` #### Attributes:
AttributeMLIR TypeDescription
alignment::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of floating-point or integer or ptr values | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.local_dealloc` (triton::gpu::LocalDeallocOp) _Dealloc buffer_ Syntax: ``` operation ::= `ttg.local_dealloc` $src attr-dict `:` qualified(type($src)) ``` This operation deallocates a buffer explicitly. Using the buffer after this operation is undefined. This operation is optional. If you don't explicitly dealloc a buffer, the compiler assumes it's deallocated at the first point that post-dominates all uses of the alloc. Because we assume a memdesc is dead at the first point that post-dominates its uses, ops that wait for an async operation on a memdesc to complete (such as ttng.warp_group_dot_wait) should also take the memdesc as an operand. Traits: `VerifyTensorLayoutsTrait` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.local_gather` (triton::gpu::LocalGatherOp) _Gather elements from shared memory along a specified axis_ Syntax: ``` operation ::= `ttg.local_gather` $src `[` $indices `]` (`token` $token^)? attr-dict `:` qualified(type($src)) `,` type($indices) `->` type($result) ``` Gather elements from a shared memory descriptor using an indices tensor along a single specified axis. The output tensor has the same shape as the indices tensor. For each output position I, the operation reads from src where the coordinate at the gather axis is replaced by indices[I]: result[I] = src[I[0], ..., indices[I], ..., I[n]] where the axis dimension is replaced by the index value. This matches the behavior of tt.gather but operates on shared memory descriptors. Traits: `LocalLoadTrait`, `VerifyTensorLayoutsTrait` #### Attributes:
AttributeMLIR TypeDescription
axis::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | | `indices` | ranked tensor of integer values | | `token` | async token type | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point or integer or ptr values | ### `ttg.local_load` (triton::gpu::LocalLoadOp) _Load a buffer from local memory into a distributed tensor_ Syntax: ``` operation ::= `ttg.local_load` $src (`token` $token^)? attr-dict `:` qualified(type($src)) `->` type($result) ``` Load a tensor from the local memory descriptor into a distributed tensor. Traits: `LocalLoadTrait`, `VerifyTensorLayoutsTrait` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | | `token` | async token type | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point or integer or ptr values | ### `ttg.local_scatter` (triton::gpu::LocalScatterOp) _Scatter elements to shared memory along a specified axis_ Syntax: ``` operation ::= `ttg.local_scatter` $dst `[` $indices `]` `,` $values (`token` $token^)? attr-dict `:` qualified(type($dst)) `,` type($indices) `,` type($values) ``` Scatter elements to a shared memory descriptor using an indices tensor along a single specified axis. The values tensor has the same shape as the indices tensor. For each input position I, the operation writes to dst where the coordinate at the scatter axis is replaced by indices[I]: dst[I[0], ..., indices[I], ..., I[n]] = values[I] where the axis dimension is replaced by the index value. This is the inverse of local_gather and writes to shared memory at runtime-computed indices. Traits: `VerifyTensorLayoutsTrait` #### Attributes:
AttributeMLIR TypeDescription
axis::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `dst` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | | `values` | ranked tensor of floating-point or integer or ptr values | | `indices` | ranked tensor of integer values | | `token` | async token type | ### `ttg.local_store` (triton::gpu::LocalStoreOp) _Store a distributed tensor into a buffer in local memory_ Syntax: ``` operation ::= `ttg.local_store` $src `,` $dst attr-dict `:` type($src) `->` qualified(type($dst)) ``` Store a distributed tensor into a buffer in local memory. Traits: `VerifyTensorLayoutsTrait` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of floating-point or integer or ptr values | | `dst` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.mask` (triton::gpu::MaskOp) _Mask op for pipelining_ Traits: `SingleBlock`, `VerifyTensorLayoutsTrait` #### Operands: | Operand | Description | | :-----: | ----------- | | `pred` | 1-bit signless integer | #### Results: | Result | Description | | :----: | ----------- | | `result` | variadic of any type | ### `ttg.mask.return` (triton::gpu::MaskReturnOp) _Terminator for mask operator_ Syntax: ``` operation ::= `ttg.mask.return` $result attr-dict `:` type($result) ``` Traits: `AlwaysSpeculatableImplTrait`, `HasParent`, `ReturnLike`, `Terminator`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`, `RegionBranchTerminatorOpInterface` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `result` | variadic of any type | ### `ttg.memdesc_index` (triton::gpu::MemDescIndexOp) _Take a subview of the descriptor._ Syntax: ``` operation ::= `ttg.memdesc_index` $src `[` $index `]` attr-dict `:` qualified(type($src)) `->` qualified(type($result)) ``` This operation returns a new descriptor pointing to the `i`-th element of the input descriptor along the 0-th dimension. It doesn't affect the underlying memory. For example, suppose that - the input shape is 2x4x16xf16, - the output shape is 4x16xf16, and - index = 1. Then the output descriptor is equivalent to input[1], where input is the logical tensor. Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | | `index` | 32-bit signless integer | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.memdesc_reinterpret` (triton::gpu::MemDescReinterpretOp) _Reinterpret a memory descriptor as a different type and shape_ Syntax: ``` operation ::= `ttg.memdesc_reinterpret` $src attr-dict `:` qualified(type($src)) `->` qualified(type($result)) ``` The `ttg.memdesc_reinterpret` operation reinterprets a memory descriptor as one with a different shape and element type. Because memory descriptors lack strides, this operation is only valid if the original memory descriptor is contiguous. Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.memdesc_reshape` (triton::gpu::MemDescReshapeOp) _Creates a descriptor for the new shape_ Syntax: ``` operation ::= `ttg.memdesc_reshape` $src attr-dict `:` qualified(type($src)) `->` qualified(type($result)) ``` This operation returns a new descriptor representing a reshaped view of the underlying buffer. This doesn't affect the memory. Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `SameOperandsAndResultElementType`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.memdesc_subslice` (triton::gpu::MemDescSubsliceOp) _Take a subview of the descriptor._ Syntax: ``` operation ::= `ttg.memdesc_subslice` $src `[` custom($offsets) `]` attr-dict `:` qualified(type($src)) `->` qualified(type($result)) ``` This operation returns a new descriptor representing a subview of the logical tensor. It doesn't affect the underlying memory. For example, suppose that - the input shape is 32x16xf16, - the output shape is 8x16xf16, and - offsets = [2, 1]. Then in Python syntax, the subview covers input[2:8+2, 1:16+1] where input is the logical tensor. The offsets must be larger or equal to the tile of the tensor (or zero). Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
offsets::mlir::DenseI32ArrayAttri32 dense array attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.memdesc_trans` (triton::gpu::MemDescTransOp) _Transpose the descriptor_ Syntax: ``` operation ::= `ttg.memdesc_trans` $src attr-dict `:` qualified(type($src)) `->` qualified(type($result)) ``` This operation returns a new descriptor representing a transposed view of the buffer. Traits: `AlwaysSpeculatableImplTrait`, `InferTypeOpAdaptor`, `MemDescViewTrait`, `SameOperandsAndResultElementType`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `InferTypeOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)`, `TransposeOpInterface` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
order::mlir::DenseI32ArrayAttri32 dense array attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.predicate_stage` (triton::gpu::PredicateStageOp) _Pipeliner stage predicate_ Syntax: ``` operation ::= `ttg.predicate_stage` $iv `,` $ub `,` $step `maxStage` $maxStage `stage` $stage attr-dict `:` type($iv) `->` type($result) ``` Traits: `AlwaysSpeculatableImplTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `InferTypeOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
maxStage::mlir::IntegerAttr32-bit signless integer attribute
stage::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `iv` | signless integer or index | | `ub` | signless integer or index | | `step` | signless integer or index | #### Results: | Result | Description | | :----: | ----------- | | `result` | 1-bit signless integer | ### `ttg.warp_id` (triton::gpu::WarpIdOp) _Return the GPU warp ID_ Syntax: ``` operation ::= `ttg.warp_id` attr-dict ``` This operation returns the GPU warp ID. This can translate to reading hardware registers if there are, or just thread ID divided by warp size. The `omitUniformHint` attribute is indicating in NVIDIA backend whether to omit emitting nvvm.shfl.sync idx 0 for LLVM. Traits: `AlwaysSpeculatableImplTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `InferTypeOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
omitUniformHint::mlir::UnitAttrunit attribute
#### Results: | Result | Description | | :----: | ----------- | | `result` | 32-bit signless integer | ### `ttg.warp_return` (triton::gpu::WarpReturnOp) _Implicit terminator from partition regions_ Syntax: ``` operation ::= `ttg.warp_return` attr-dict ``` The `ttg.warp_return` operation is the implicit terminator that ends the partition regions of a `ttg.warp_specialize` op. It has no operands as these regions cannot return anything. TODO: Support returning uniform values from partition regions. Traits: `AlwaysSpeculatableImplTrait`, `HasParent`, `ReturnLike`, `Terminator`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`, `RegionBranchTerminatorOpInterface` Effects: `MemoryEffects::Effect{}` ### `ttg.warp_specialize` (triton::gpu::WarpSpecializeOp) _Asynchronously execute code on multiple warpgroups_ The `ttg.warp_specialize` op represents executing different code simultaneously on different warp groups. A warp group is a group of power-of-2 warps, which can be a different number of warps than in the enclosing region. The "default" region of the op represents the code executed by the currently executing warp group. This region is allowed to implicitly capture. The op contains a number of "partition" regions that are isolated from above. They must be isolated because these regions represent different layout domains, as the number of warps is different. Semantically, execution of each region starts simultaneously for each warp group, and all warp groups are joined at the end of the op. Example: ```mlir %0 = ttg.warp_specialize(%a, %b) default { %out = some_operation(%a) // implicit capture of `%a` ttg.warp_yield %out : i32 } partition0(%arg0: i32, %arg1: i32) num_warps(8) { some_async_dispatch(%arg0, %arg1) ttg.warp_return } partition1(%arg0: i32, %arg1: i32) num_warps(1) { some_async_dispatch(%arg0, %arg1) ttg.warp_return } : (i32, i32) -> i32 ``` Traits: `AsyncRegions`, `RecursiveMemoryEffects`, `RecursivelySpeculatableImplTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `RegionBranchOpInterface` #### Attributes:
AttributeMLIR TypeDescription
partitionNumWarps::mlir::DenseI32ArrayAttri32 dense array attribute
warpGroupStartIds::mlir::DenseI32ArrayAttri32 dense array attribute
requestedRegisters::mlir::DenseI32ArrayAttri32 dense array attribute
actualRegisters::mlir::DenseI32ArrayAttri32 dense array attribute
#### Results: | Result | Description | | :----: | ----------- | | `defaultPassthrough` | variadic of any type | ### `ttg.warp_specialize.partitions` (triton::gpu::WarpSpecializePartitionsOp) _Container op for `ttg.warp_specialize`_ Because MLIR requires entire operations be isolated from above, this op contains the actual isolated from above regions of `ttg.warp_specialize`. Traits: `HasParent`, `IsolatedFromAbove`, `RecursiveMemoryEffects`, `RecursivelySpeculatableImplTrait`, `Terminator`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `RegionBranchOpInterface` #### Operands: | Operand | Description | | :-----: | ----------- | | `explicitCaptures` | variadic of any type | ### `ttg.warp_yield` (triton::gpu::WarpYieldOp) _Yield from the default region of `ttg.warp_specialize`_ Syntax: ``` operation ::= `ttg.warp_yield` ($values^)? attr-dict (`:` type($values)^)? ``` The `ttg.warp_yield` operation is the terminator for the "default" region of a `ttg.warp_specialize` operation. The operands are passed transparently as the SSA results of the `ttg.warp_specialize` operation. Example: ```mlir ttg.warp_yield %a, %b : i32, tensor<32xbf16, #blocked> ``` Traits: `AlwaysSpeculatableImplTrait`, `HasParent`, `ReturnLike`, `Terminator`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`, `RegionBranchTerminatorOpInterface` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `values` | variadic of any type |