# TritonGPUOps
### `ttg.async_commit_group` (triton::gpu::AsyncCommitGroupOp)
_Commit pending async copies into an async group that can be waited on_
Syntax:
```
operation ::= `ttg.async_commit_group` (`tokens` $inputTokens^)? attr-dict
```
Closes the current batch of async_copy_* operations
and allows for them to be waited on with `ttg.async_wait`.
This is required in order to ensure async copy operations can be waited on.
Traits: `VerifyTensorLayoutsTrait`
Interfaces: `InferTypeOpInterface`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `inputTokens` | variadic of async token type |
#### Results:
| Result | Description |
| :----: | ----------- |
| `asyncToken` | async token type |
### `ttg.async_copy_global_to_local` (triton::gpu::AsyncCopyGlobalToLocalOp)
_Copy data from global memory to local memory asynchronously_
Syntax:
```
operation ::= `ttg.async_copy_global_to_local` $src `,` $result (`mask` $mask^)? (`other` $other^)?
oilist(`cacheModifier` `=` $cache | `evictionPolicy` `=` $evict)
attr-dict `:` type($src) `->` type($result)
```
This operation copies data from global memory to local memory asynchronously.
This is analogue to `tt.load` except the data are copied to local memory pointed
to by the memory descriptor instead of a distributed tensor. The rest of the
operands are the same as `tt.load`.
Contiguity is the maximum number of elements that can be loaded in a single vector with
the given layout and mask.
This allows op to use `async_copy_global_to_local` even if the alignment cannot be proven based on IR.
The data will only be available in local memory after `ttg.async_wait` is issued to wait on the
completion of `async_copy_global_to_local`. The async copy operations must be committed using
`ttg.async_commit_group` to close the batch and allow for them to be waited on.
Traits: `AttrSizedOperandSegments`, `VerifyTensorLayoutsTrait`
Interfaces: `InferTypeOpInterface`
#### Attributes:
| Attribute | MLIR Type | Description |
cache | ::mlir::triton::CacheModifierAttr | allowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7 |
evict | ::mlir::triton::EvictionPolicyAttr | allowed 32-bit signless integer cases: 1, 2, 3 |
isVolatile | ::mlir::BoolAttr | bool attribute |
contiguity | ::mlir::IntegerAttr | 32-bit signless integer attribute |
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | ranked tensor of ptr values |
| `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
| `mask` | tensor of 1-bit signless integer values |
| `other` | floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
#### Results:
| Result | Description |
| :----: | ----------- |
| `token` | async token type |
### `ttg.async_wait` (triton::gpu::AsyncWaitOp)
_Ensure all specified async_copy_* operations are complete._
Syntax:
```
operation ::= `ttg.async_wait` ($asyncToken^)? attr-dict
```
The `async_wait` op waits until at most "num" async copy groups are outstanding without synchronising CTA execution.
It takes zero or more `asyncToken` plus an integer `num` that specifies how many async copy groups can remain
outstanding after the `async_wait` op is completed. `num = 0` waits until all groups of async copies are complete.
This operation does not provide any syncronisation in the CTA, if syncronisation is needed use `ttg.local_barrier`
in addition to this operation.
Traits: `MemWaitOpTrait`, `VerifyTensorLayoutsTrait`
Interfaces: `InferTypeOpInterface`
#### Attributes:
| Attribute | MLIR Type | Description |
num | ::mlir::IntegerAttr | 32-bit signless integer attribute |
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `asyncToken` | variadic of async token type |
#### Results:
| Result | Description |
| :----: | ----------- |
| `retToken` | async token type |
### `ttg.barrier` (triton::gpu::BarrierOp)
_Synchronizes execution and reads/writes to the selected address spaces for all threads in the CTA._
The `barrier` op synchronises the execution and all operations between the selected address spaces for all
threads in the CTA. It is used to coordinate communication between threads in the CTA.
This operation waits until all threads in the CTA have reached a `barrier` (for syncronisation) and operations
between the selected address spaces made by these threads prior to the op are visible to all threads in the CTA.
Data hazards between threads accessing the same memory can be avoided by synchronising the
specified scope in-between these accesses with a `barrier`.
A `barrier` operation only provides syncronisation and memory guarantees on the selected address spaces in the CTA.
The mandatory `addrspace` attribute is a bitmask describing which address spaces will be visible when the `barrier` completes:
* `none` control-only syncronisation (no memory ordering).
* `local` shared-memory operations are complete and visible CTA-wide.
* `global_read` global memory reads are complete and visible CTA-wide.
* `global_write` global memory writes are complete and visible CTA-wide.
* `tensor_read` tensor memory read operations are complete and visible CTA-wide.
* `tensor_write` tensor memory write operations are complete and visible CTA-wide.
* `all` convenience alias for `["local", "global_read", "global_write", "tensor_read", "tensor_write"]`.
Multiple address spaces can be combined (e.g. `local|tensor_write`). `none` cannot be combined with other address spaces.
Example:
```mlir
ttg.barrier local
ttg.barrier local|global_read|global_write
```
Traits: `VerifyTensorLayoutsTrait`
#### Attributes:
| Attribute | MLIR Type | Description |
addrSpace | ::mlir::triton::gpu::AddrSpaceAttr | |
### `ttg.convert_layout` (triton::gpu::ConvertLayoutOp)
_Convert layout_
Syntax:
```
operation ::= `ttg.convert_layout` $src attr-dict `:` type($src) `->` type($result)
```
Traits: `AlwaysSpeculatableImplTrait`, `SameOperandsAndResultElementType`, `SameOperandsAndResultShape`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | ranked tensor of floating-point or integer or ptr values |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | ranked tensor of floating-point or integer or ptr values |
### `ttg.fp4_to_fp` (triton::gpu::Fp4ToFpOp)
_Upcast fp4 (e2m1) to fp_
Syntax:
```
operation ::= `ttg.fp4_to_fp` $src attr-dict `:` type($src) `->` type($result)
```
Upcast fp4 (e2m1) represented packed as i8s to fp.
The lower 4 bits of the i8s represent the first fp4 element, and the upper 4 bits
the second fp4 element.
The `axis` attribute specifies the axis along which the fp4 elements are packed.
Traits: `AlwaysSpeculatableImplTrait`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Attributes:
| Attribute | MLIR Type | Description |
axis | ::mlir::IntegerAttr | 32-bit signless integer attribute |
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | ranked tensor of 8-bit signless integer values |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | ranked tensor of floating-point values |
### `ttg.global_scratch_alloc` (triton::gpu::GlobalScratchAllocOp)
_Allocate a global memory buffer_
Syntax:
```
operation ::= `ttg.global_scratch_alloc` attr-dict `:` qualified(type($result))
```
This operation allocates a buffer in global memory that is private to the current program.
The `backend` attribute specifies the backend to use for allocation.
The `default` backend is used by TritonGPU passes.
Downstream Triton tools and compilers can register a different backend and use a different allocation policy.
Traits: `VerifyTensorLayoutsTrait`
#### Attributes:
| Attribute | MLIR Type | Description |
nbytes | ::mlir::IntegerAttr | 32-bit signless integer attribute |
alignment | ::mlir::IntegerAttr | 32-bit signless integer attribute |
backend | ::mlir::StringAttr | string attribute |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | ptr |
### `ttg.local_alloc` (triton::gpu::LocalAllocOp)
_Allocate tensor_
Syntax:
```
operation ::= `ttg.local_alloc` ($src^)? attr-dict `:` functional-type(operands, results)
```
This operation allocates buffer in shared memory and return a descriptor
containing the address and a view of the buffer.
Explicitly deallocating a buffer is optional; see local_dealloc.
The `src` operand is an optional initializer for the allocated buffer. It
must have the element type as the buffer. If `src` is not specified, the
returned buffer must be mutable.
Traits: `VerifyTensorLayoutsTrait`
Interfaces: `MemoryEffectOpInterface`
#### Attributes:
| Attribute | MLIR Type | Description |
alignment | ::mlir::IntegerAttr | 32-bit signless integer attribute |
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | ranked tensor of floating-point or integer or ptr values |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
### `ttg.local_dealloc` (triton::gpu::LocalDeallocOp)
_Dealloc buffer_
Syntax:
```
operation ::= `ttg.local_dealloc` $src attr-dict `:` qualified(type($src))
```
This operation deallocates a buffer explicitly. Using the buffer after this
operation is undefined.
This operation is optional. If you don't explicitly dealloc a buffer, the
compiler assumes it's deallocated at the first point that post-dominates all
uses of the alloc.
Because we assume a memdesc is dead at the first point that post-dominates
its uses, ops that wait for an async operation on a memdesc to complete
(such as ttng.warp_group_dot_wait) should also take the memdesc as an
operand.
Traits: `VerifyTensorLayoutsTrait`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
### `ttg.local_gather` (triton::gpu::LocalGatherOp)
_Gather elements from shared memory along a specified axis_
Syntax:
```
operation ::= `ttg.local_gather` $src `[` $indices `]` (`token` $token^)? attr-dict `:` qualified(type($src)) `,` type($indices) `->` type($result)
```
Gather elements from a shared memory descriptor using an indices tensor along a
single specified axis. The output tensor has the same shape as the indices tensor.
For each output position I, the operation reads from src where the coordinate at
the gather axis is replaced by indices[I]:
result[I] = src[I[0], ..., indices[I], ..., I[n]]
where the axis dimension is replaced by the index value.
This matches the behavior of tt.gather but operates on shared memory descriptors.
Traits: `LocalLoadTrait`, `VerifyTensorLayoutsTrait`
#### Attributes:
| Attribute | MLIR Type | Description |
axis | ::mlir::IntegerAttr | 32-bit signless integer attribute |
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
| `indices` | ranked tensor of integer values |
| `token` | async token type |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | ranked tensor of floating-point or integer or ptr values |
### `ttg.local_load` (triton::gpu::LocalLoadOp)
_Load a buffer from local memory into a distributed tensor_
Syntax:
```
operation ::= `ttg.local_load` $src (`token` $token^)? attr-dict `:` qualified(type($src)) `->` type($result)
```
Load a tensor from the local memory descriptor into a distributed tensor.
Traits: `LocalLoadTrait`, `VerifyTensorLayoutsTrait`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
| `token` | async token type |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | ranked tensor of floating-point or integer or ptr values |
### `ttg.local_scatter` (triton::gpu::LocalScatterOp)
_Scatter elements to shared memory along a specified axis_
Syntax:
```
operation ::= `ttg.local_scatter` $dst `[` $indices `]` `,` $values (`token` $token^)? attr-dict `:` qualified(type($dst)) `,` type($indices) `,` type($values)
```
Scatter elements to a shared memory descriptor using an indices tensor along a
single specified axis. The values tensor has the same shape as the indices tensor.
For each input position I, the operation writes to dst where the coordinate at
the scatter axis is replaced by indices[I]:
dst[I[0], ..., indices[I], ..., I[n]] = values[I]
where the axis dimension is replaced by the index value.
This is the inverse of local_gather and writes to shared memory at runtime-computed indices.
Traits: `VerifyTensorLayoutsTrait`
#### Attributes:
| Attribute | MLIR Type | Description |
axis | ::mlir::IntegerAttr | 32-bit signless integer attribute |
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `dst` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
| `values` | ranked tensor of floating-point or integer or ptr values |
| `indices` | ranked tensor of integer values |
| `token` | async token type |
### `ttg.local_store` (triton::gpu::LocalStoreOp)
_Store a distributed tensor into a buffer in local memory_
Syntax:
```
operation ::= `ttg.local_store` $src `,` $dst attr-dict `:` type($src) `->` qualified(type($dst))
```
Store a distributed tensor into a buffer in local memory.
Traits: `VerifyTensorLayoutsTrait`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | ranked tensor of floating-point or integer or ptr values |
| `dst` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
### `ttg.mask` (triton::gpu::MaskOp)
_Mask op for pipelining_
Traits: `SingleBlock`, `VerifyTensorLayoutsTrait`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `pred` | 1-bit signless integer |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | variadic of any type |
### `ttg.mask.return` (triton::gpu::MaskReturnOp)
_Terminator for mask operator_
Syntax:
```
operation ::= `ttg.mask.return` $result attr-dict `:` type($result)
```
Traits: `AlwaysSpeculatableImplTrait`, `HasParent`, `ReturnLike`, `Terminator`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`, `RegionBranchTerminatorOpInterface`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `result` | variadic of any type |
### `ttg.memdesc_index` (triton::gpu::MemDescIndexOp)
_Take a subview of the descriptor._
Syntax:
```
operation ::= `ttg.memdesc_index` $src `[` $index `]` attr-dict `:` qualified(type($src)) `->` qualified(type($result))
```
This operation returns a new descriptor pointing to the `i`-th element of the
input descriptor along the 0-th dimension.
It doesn't affect the underlying memory.
For example, suppose that
- the input shape is 2x4x16xf16,
- the output shape is 4x16xf16, and
- index = 1.
Then the output descriptor is equivalent to input[1], where input is the logical tensor.
Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
| `index` | 32-bit signless integer |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
### `ttg.memdesc_reinterpret` (triton::gpu::MemDescReinterpretOp)
_Reinterpret a memory descriptor as a different type and shape_
Syntax:
```
operation ::= `ttg.memdesc_reinterpret` $src attr-dict `:` qualified(type($src)) `->` qualified(type($result))
```
The `ttg.memdesc_reinterpret` operation reinterprets a memory descriptor
as one with a different shape and element type. Because memory descriptors
lack strides, this operation is only valid if the original memory descriptor
is contiguous.
Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
### `ttg.memdesc_reshape` (triton::gpu::MemDescReshapeOp)
_Creates a descriptor for the new shape_
Syntax:
```
operation ::= `ttg.memdesc_reshape` $src attr-dict `:` qualified(type($src)) `->` qualified(type($result))
```
This operation returns a new descriptor representing a reshaped view of the underlying buffer.
This doesn't affect the memory.
Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `SameOperandsAndResultElementType`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
### `ttg.memdesc_subslice` (triton::gpu::MemDescSubsliceOp)
_Take a subview of the descriptor._
Syntax:
```
operation ::= `ttg.memdesc_subslice` $src `[` custom($offsets) `]` attr-dict `:` qualified(type($src))
`->` qualified(type($result))
```
This operation returns a new descriptor representing a subview of the logical tensor.
It doesn't affect the underlying memory.
For example, suppose that
- the input shape is 32x16xf16,
- the output shape is 8x16xf16, and
- offsets = [2, 1].
Then in Python syntax, the subview covers input[2:8+2, 1:16+1] where input is
the logical tensor.
The offsets must be larger or equal to the tile of the tensor (or zero).
Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Attributes:
| Attribute | MLIR Type | Description |
offsets | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
### `ttg.memdesc_trans` (triton::gpu::MemDescTransOp)
_Transpose the descriptor_
Syntax:
```
operation ::= `ttg.memdesc_trans` $src attr-dict `:` qualified(type($src)) `->` qualified(type($result))
```
This operation returns a new descriptor
representing a transposed view of the buffer.
Traits: `AlwaysSpeculatableImplTrait`, `InferTypeOpAdaptor`, `MemDescViewTrait`, `SameOperandsAndResultElementType`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `InferTypeOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)`, `TransposeOpInterface`
Effects: `MemoryEffects::Effect{}`
#### Attributes:
| Attribute | MLIR Type | Description |
order | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system |
### `ttg.predicate_stage` (triton::gpu::PredicateStageOp)
_Pipeliner stage predicate_
Syntax:
```
operation ::= `ttg.predicate_stage` $iv `,` $ub `,` $step `maxStage` $maxStage `stage` $stage attr-dict `:` type($iv) `->` type($result)
```
Traits: `AlwaysSpeculatableImplTrait`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `InferTypeOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Attributes:
| Attribute | MLIR Type | Description |
maxStage | ::mlir::IntegerAttr | 32-bit signless integer attribute |
stage | ::mlir::IntegerAttr | 32-bit signless integer attribute |
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `iv` | signless integer or index |
| `ub` | signless integer or index |
| `step` | signless integer or index |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | 1-bit signless integer |
### `ttg.warp_id` (triton::gpu::WarpIdOp)
_Return the GPU warp ID_
Syntax:
```
operation ::= `ttg.warp_id` attr-dict
```
This operation returns the GPU warp ID. This can translate to reading
hardware registers if there are, or just thread ID divided by warp size.
The `omitUniformHint` attribute is indicating in NVIDIA backend whether to
omit emitting nvvm.shfl.sync idx 0 for LLVM.
Traits: `AlwaysSpeculatableImplTrait`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `InferTypeOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Attributes:
| Attribute | MLIR Type | Description |
omitUniformHint | ::mlir::UnitAttr | unit attribute |
#### Results:
| Result | Description |
| :----: | ----------- |
| `result` | 32-bit signless integer |
### `ttg.warp_return` (triton::gpu::WarpReturnOp)
_Implicit terminator from partition regions_
Syntax:
```
operation ::= `ttg.warp_return` attr-dict
```
The `ttg.warp_return` operation is the implicit terminator that ends the
partition regions of a `ttg.warp_specialize` op. It has no operands as these
regions cannot return anything.
TODO: Support returning uniform values from partition regions.
Traits: `AlwaysSpeculatableImplTrait`, `HasParent`, `ReturnLike`, `Terminator`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`, `RegionBranchTerminatorOpInterface`
Effects: `MemoryEffects::Effect{}`
### `ttg.warp_specialize` (triton::gpu::WarpSpecializeOp)
_Asynchronously execute code on multiple warpgroups_
The `ttg.warp_specialize` op represents executing different code
simultaneously on different warp groups. A warp group is a group of
power-of-2 warps, which can be a different number of warps than in the
enclosing region.
The "default" region of the op represents the code executed by the currently
executing warp group. This region is allowed to implicitly capture. The op
contains a number of "partition" regions that are isolated from above. They
must be isolated because these regions represent different layout domains,
as the number of warps is different.
Semantically, execution of each region starts simultaneously for each warp
group, and all warp groups are joined at the end of the op.
Example:
```mlir
%0 = ttg.warp_specialize(%a, %b)
default {
%out = some_operation(%a) // implicit capture of `%a`
ttg.warp_yield %out : i32
}
partition0(%arg0: i32, %arg1: i32) num_warps(8) {
some_async_dispatch(%arg0, %arg1)
ttg.warp_return
}
partition1(%arg0: i32, %arg1: i32) num_warps(1) {
some_async_dispatch(%arg0, %arg1)
ttg.warp_return
} : (i32, i32) -> i32
```
Traits: `AsyncRegions`, `RecursiveMemoryEffects`, `RecursivelySpeculatableImplTrait`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `RegionBranchOpInterface`
#### Attributes:
| Attribute | MLIR Type | Description |
partitionNumWarps | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
warpGroupStartIds | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
requestedRegisters | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
actualRegisters | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
#### Results:
| Result | Description |
| :----: | ----------- |
| `defaultPassthrough` | variadic of any type |
### `ttg.warp_specialize.partitions` (triton::gpu::WarpSpecializePartitionsOp)
_Container op for `ttg.warp_specialize`_
Because MLIR requires entire operations be isolated from above, this op
contains the actual isolated from above regions of `ttg.warp_specialize`.
Traits: `HasParent`, `IsolatedFromAbove`, `RecursiveMemoryEffects`, `RecursivelySpeculatableImplTrait`, `Terminator`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `RegionBranchOpInterface`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `explicitCaptures` | variadic of any type |
### `ttg.warp_yield` (triton::gpu::WarpYieldOp)
_Yield from the default region of `ttg.warp_specialize`_
Syntax:
```
operation ::= `ttg.warp_yield` ($values^)? attr-dict (`:` type($values)^)?
```
The `ttg.warp_yield` operation is the terminator for the "default" region of
a `ttg.warp_specialize` operation. The operands are passed transparently as
the SSA results of the `ttg.warp_specialize` operation.
Example:
```mlir
ttg.warp_yield %a, %b : i32, tensor<32xbf16, #blocked>
```
Traits: `AlwaysSpeculatableImplTrait`, `HasParent`, `ReturnLike`, `Terminator`, `VerifyTensorLayoutsTrait`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`, `RegionBranchTerminatorOpInterface`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `values` | variadic of any type |