# TritonGPUOps ### `ttg.async_commit_group` (triton::gpu::AsyncCommitGroupOp) _Async commit group_ Syntax: ``` operation ::= `ttg.async_commit_group` $inputTokens attr-dict ``` Traits: `VerifyTensorLayoutsTrait` Interfaces: `InferTypeOpInterface` #### Operands: | Operand | Description | | :-----: | ----------- | | `inputTokens` | variadic of async token type | #### Results: | Result | Description | | :----: | ----------- | | `asyncToken` | async token type | ### `ttg.async_copy_global_to_local` (triton::gpu::AsyncCopyGlobalToLocalOp) _Copy data from global memory to local memory asynchronously_ Syntax: ``` operation ::= `ttg.async_copy_global_to_local` $src `,` $result (`mask` $mask^)? (`other` $other^)? oilist(`cacheModifier` `=` $cache | `evictionPolicy` `=` $evict) attr-dict `:` type($src) `->` type($result) ``` This operation copies data from global memory to local memory asynchronously. This is analogue to tt.load except the data are copied to local memory pointed to by the memory descriptor instead of a distributed tensor. The rest of the operands are the same as tt.load. Traits: `AttrSizedOperandSegments`, `VerifyTensorLayoutsTrait` Interfaces: `InferTypeOpInterface` #### Attributes:
AttributeMLIR TypeDescription
cache::mlir::triton::CacheModifierAttrallowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7
evict::mlir::triton::EvictionPolicyAttrallowed 32-bit signless integer cases: 1, 2, 3
isVolatile::mlir::BoolAttrbool attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of ptr values | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | | `mask` | tensor of 1-bit signless integer values | | `other` | floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr | #### Results: | Result | Description | | :----: | ----------- | | `token` | async token type | ### `ttg.async_wait` (triton::gpu::AsyncWaitOp) _Async wait_ Syntax: ``` operation ::= `ttg.async_wait` $asyncToken attr-dict ``` Traits: `VerifyTensorLayoutsTrait` Interfaces: `InferTypeOpInterface` #### Attributes:
AttributeMLIR TypeDescription
num::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `asyncToken` | variadic of async token type | #### Results: | Result | Description | | :----: | ----------- | | `retToken` | async token type | ### `ttg.convert_layout` (triton::gpu::ConvertLayoutOp) _Convert layout_ Syntax: ``` operation ::= `ttg.convert_layout` $src attr-dict `:` type($src) `->` type($result) ``` Traits: `AlwaysSpeculatableImplTrait`, `SameOperandsAndResultElementType`, `SameOperandsAndResultShape`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of floating-point or integer or ptr values | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point or integer or ptr values | ### `ttg.fp4_to_fp` (triton::gpu::Fp4ToFpOp) _Upcast fp4 (e2m1) to fp_ Syntax: ``` operation ::= `ttg.fp4_to_fp` $src attr-dict `:` type($src) `->` type($result) ``` Upcast fp4 (e2m1) represented packed as i8s to fp. The lower 4 bits of the i8s represent the first fp4 element, and the upper 4 bits the second fp4 element. The `axis` attribute specifies the axis along which the fp4 elements are packed. Traits: `AlwaysSpeculatableImplTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
axis::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of 8-bit signless integer values | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point values | ### `ttg.global_scratch_alloc` (triton::gpu::GlobalScratchAllocOp) _Allocate a global memory buffer_ Syntax: ``` operation ::= `ttg.global_scratch_alloc` attr-dict `:` qualified(type($result)) ``` This operation allocates a buffer in global memory that is private to the current program. Traits: `VerifyTensorLayoutsTrait` #### Attributes:
AttributeMLIR TypeDescription
nbytes::mlir::IntegerAttr32-bit signless integer attribute
alignment::mlir::IntegerAttr32-bit signless integer attribute
#### Results: | Result | Description | | :----: | ----------- | | `result` | ptr | ### `ttg.local_alloc` (triton::gpu::LocalAllocOp) _Allocate tensor_ Syntax: ``` operation ::= `ttg.local_alloc` ($src^)? attr-dict `:` functional-type(operands, results) ``` This operation allocates buffer in shared memory and return a descriptor containing the address and a view of the buffer. Explicitly deallocating a buffer is optional; see local_dealloc. The `src` operand is an optional initializer for the allocated buffer. It must have the element type as the buffer. If `src` is not specified, the returned buffer must be mutable. Traits: `VerifyTensorLayoutsTrait` Interfaces: `MemoryEffectOpInterface` #### Attributes:
AttributeMLIR TypeDescription
alignment::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of floating-point or integer or ptr values | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.local_dealloc` (triton::gpu::LocalDeallocOp) _Dealloc buffer_ Syntax: ``` operation ::= `ttg.local_dealloc` $src attr-dict `:` qualified(type($src)) ``` This operation deallocates a buffer explicitly. Using the buffer after this operation is undefined. This operation is optional. If you don't explicitly dealloc a buffer, the compiler assumes it's deallocated at the first point that post-dominates all uses of the alloc. Because we assume a memdesc is dead at the first point that post-dominates its uses, ops that wait for an async operation on a memdesc to complete (such as ttng.warp_group_dot_wait) should also take the memdesc as an operand. Traits: `VerifyTensorLayoutsTrait` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.local_load` (triton::gpu::LocalLoadOp) _Load a buffer from local memory into a distributed tensor_ Syntax: ``` operation ::= `ttg.local_load` $src (`token` $token^)? attr-dict `:` qualified(type($src)) `->` type($result) ``` Load a tensor from the local memory descriptor into a distributed tensor. Traits: `VerifyTensorLayoutsTrait` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | | `token` | async token type | #### Results: | Result | Description | | :----: | ----------- | | `result` | ranked tensor of floating-point or integer or ptr values | ### `ttg.local_store` (triton::gpu::LocalStoreOp) _Store a distributed tensor into a buffer in local memory_ Syntax: ``` operation ::= `ttg.local_store` $src `,` $dst attr-dict `:` type($src) `->` qualified(type($dst)) ``` Store a distributed tensor into a buffer in local memory. Traits: `VerifyTensorLayoutsTrait` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | ranked tensor of floating-point or integer or ptr values | | `dst` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.mask` (triton::gpu::MaskOp) _Mask op for pipelining_ Traits: `SingleBlock`, `VerifyTensorLayoutsTrait` #### Operands: | Operand | Description | | :-----: | ----------- | | `pred` | 1-bit signless integer | #### Results: | Result | Description | | :----: | ----------- | | `result` | variadic of any type | ### `ttg.mask.return` (triton::gpu::MaskReturnOp) _Terminator for mask operator_ Syntax: ``` operation ::= `ttg.mask.return` $result attr-dict `:` type($result) ``` Traits: `AlwaysSpeculatableImplTrait`, `HasParent`, `ReturnLike`, `Terminator`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`, `RegionBranchTerminatorOpInterface` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `result` | variadic of any type | ### `ttg.memdesc_reinterpret` (triton::gpu::MemDescReinterpretOp) _Reinterpret a memory descriptor as a different type and shape_ Syntax: ``` operation ::= `ttg.memdesc_reinterpret` $src attr-dict `:` qualified(type($src)) `->` qualified(type($result)) ``` The `ttg.memdesc_reinterpret` operation reinterprets a memory descriptor as one with a different shape and element type. Because memory descriptors lack strides, this operation is only valid if the original memory descriptor is contiguous. Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.memdesc_reshape` (triton::gpu::MemDescReshapeOp) _Creates a descriptor for the new shape_ Syntax: ``` operation ::= `ttg.memdesc_reshape` $src attr-dict `:` qualified(type($src)) `->` qualified(type($result)) ``` This operation returns a new descriptor representing a reshaped view of the underlying buffer. This doesn't affect the memory. Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `SameOperandsAndResultElementType`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.memdesc_subview` (triton::gpu::MemDescSubviewOp) _Take a subview of the descriptor._ Syntax: ``` operation ::= `ttg.memdesc_subview` $src `[` $offsets `]` attr-dict `:` qualified(type($src)) `->` qualified(type($result)) ``` This operation returns a new descriptor representing a subview of the buffer. It doesn't affect the underlying memory. For example, suppose that - the input shape is 2x4x16xf16, - the output shape is 4x16xf16, and - offsets = [1, 0, 0]. Then in Python syntax, the subview covers input[1]. Just one dimension may be split (at most one non-zero offset). When the input shape and the output shape have different rank: Or the output shape is a tensor of 1D tensor of 1 element: - The rank of the output must be 1D smaller than the input. - We assume the input is split along the 0th dimension. - The offset along the 0th dimension may be a runtime value. When the input and the output have the same rank: - The offset must be a compile-time constant - Larger or equal to the tile of the tensor (or zero) - That does not split the input along the swizzling pattern (if any) Traits: `AlwaysSpeculatableImplTrait`, `MemDescViewTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | | `offsets` | variadic of 32-bit signless integer | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.memdesc_trans` (triton::gpu::MemDescTransOp) _Transpose the descriptor_ Syntax: ``` operation ::= `ttg.memdesc_trans` $src attr-dict `:` qualified(type($src)) `->` qualified(type($result)) ``` This operation returns a new descriptor representing a transposed view of the buffer. Traits: `AlwaysSpeculatableImplTrait`, `InferTypeOpAdaptor`, `MemDescViewTrait`, `SameOperandsAndResultElementType`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `InferTypeOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)`, `TransposeOpInterface` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
order::mlir::DenseI32ArrayAttri32 dense array attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `src` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | #### Results: | Result | Description | | :----: | ----------- | | `result` | memory descriptor type (`::mlir::triton::gpu::MemDescType`) in Triton IR type system | ### `ttg.predicate_stage` (triton::gpu::PredicateStageOp) _Pipeliner stage predicate_ Syntax: ``` operation ::= `ttg.predicate_stage` $iv `,` $ub `,` $step `maxStage` $maxStage `stage` $stage attr-dict `:` type($iv) `->` type($result) ``` Traits: `AlwaysSpeculatableImplTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `InferTypeOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` #### Attributes:
AttributeMLIR TypeDescription
maxStage::mlir::IntegerAttr32-bit signless integer attribute
stage::mlir::IntegerAttr32-bit signless integer attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `iv` | signless integer or index | | `ub` | signless integer or index | | `step` | signless integer or index | #### Results: | Result | Description | | :----: | ----------- | | `result` | 1-bit signless integer | ### `ttg.warp_return` (triton::gpu::WarpReturnOp) _Implicit terminator from partition regions_ Syntax: ``` operation ::= `ttg.warp_return` attr-dict ``` The `ttg.warp_return` operation is the implicit terminator that ends the partition regions of a `ttg.warp_specialize` op. It has no operands as these regions cannot return anything. TODO: Support returning uniform values from partition regions. Traits: `AlwaysSpeculatableImplTrait`, `HasParent`, `ReturnLike`, `Terminator`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`, `RegionBranchTerminatorOpInterface` Effects: `MemoryEffects::Effect{}` ### `ttg.warp_specialize` (triton::gpu::WarpSpecializeOp) _Asynchronously execute code on multiple warpgroups_ The `ttg.warp_specialize` op represents executing different code simultaneously on different warp groups. A warp group is a group of power-of-2 warps, which can be a different number of warps than in the enclosing region. The "default" region of the op represents the code executed by the currently executing warp group. This region is allowed to implicitly capture. The op contains a number of "partition" regions that are isolated from above. They must be isolated because these regions represent different layout domains, as the number of warps is different. Semantically, execution of each region starts simultaneously for each warp group, and all warp groups are joined at the end of the op. Example: ```mlir %0 = ttg.warp_specialize(%a, %b) default { %out = some_operation(%a) // implicit capture of `%a` ttg.warp_yield %out : i32 } partition0(%arg0: i32, %arg1: i32) num_warps(8) { some_async_dispatch(%arg0, %arg1) ttg.warp_return } partition1(%arg0: i32, %arg1: i32) num_warps(1) { some_async_dispatch(%arg0, %arg1) ttg.warp_return } : (i32, i32) -> i32 ``` Traits: `AsyncRegions`, `RecursiveMemoryEffects`, `RecursivelySpeculatableImplTrait`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `RegionBranchOpInterface` #### Attributes:
AttributeMLIR TypeDescription
partitionNumWarps::mlir::DenseI32ArrayAttri32 dense array attribute
warpGroupStartIds::mlir::DenseI32ArrayAttri32 dense array attribute
requestedRegisters::mlir::DenseI32ArrayAttri32 dense array attribute
actualRegisters::mlir::DenseI32ArrayAttri32 dense array attribute
#### Operands: | Operand | Description | | :-----: | ----------- | | `explicitCaptures` | variadic of any type | #### Results: | Result | Description | | :----: | ----------- | | `defaultPassthrough` | variadic of any type | ### `ttg.warp_specialize.partitions` (triton::gpu::WarpSpecializePartitionsOp) _Container op for `ttg.warp_specialize`_ Because MLIR requires entire operations be isolated from above, this op contains the actual isolated from above regions of `ttg.warp_specialize`. Traits: `HasParent`, `IsolatedFromAbove`, `RecursiveMemoryEffects`, `RecursivelySpeculatableImplTrait`, `Terminator`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable` ### `ttg.warp_yield` (triton::gpu::WarpYieldOp) _Yield from the default region of `ttg.warp_specialize`_ Syntax: ``` operation ::= `ttg.warp_yield` ($values^)? attr-dict (`:` type($values)^)? ``` The `ttg.warp_yield` operation is the terminator for the "default" region of a `ttg.warp_specialize` operation. The operands are passed transparently as the SSA results of the `ttg.warp_specialize` operation. Example: ```mlir ttg.warp_yield %a, %b : i32, tensor<32xbf16, #blocked> ``` Traits: `AlwaysSpeculatableImplTrait`, `HasParent`, `ReturnLike`, `Terminator`, `VerifyTensorLayoutsTrait` Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`, `RegionBranchTerminatorOpInterface` Effects: `MemoryEffects::Effect{}` #### Operands: | Operand | Description | | :-----: | ----------- | | `values` | variadic of any type |