.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "getting-started/tutorials/10-block-scaled-matmul.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_getting-started_tutorials_10-block-scaled-matmul.py: Block Scaled Matrix Multiplication ================================== This tutorial demonstrates a Triton implementation of block scaled matrix multiplication which is generic over FP4 and FP8 formats on NVIDIA and AMD GPUs. The tutorial supports OCP microscaling formats such as mxfp4 and mxfp8, and NVIDIA's nvfp4 (on NVIDIA GPUs) and mxfp4 (on AMD GPUs). These matrix multiplications are hardware-accelerated using fifth-generation Tensor Cores on NVIDIA GPUs with compute capability 10, and by the CDNA4 matrix cores on AMD GPUs. Users can run the tutorial with each of the supported formats by passing the `--format` argument and can benchmark the performance of each by specifying matrix dimensions and iteration steps. .. code-block:: bash # FP4 python 10-block-scaled-matmul.py --format nvfp4 python 10-block-scaled-matmul.py --format mxfp4 --K_range 512 8192 --bench # FP8 python 10-block-scaled-matmul.py --format mxfp8 --K_range 8192 16384 --K_step 2048 --bench Future updates to this tutorial which support mixed precision block scaled matmul are planned. .. GENERATED FROM PYTHON SOURCE LINES 27-69 Background ---------- Scale preshuffling on NVIDIA GPUs CUDA devices that support PTX 8.7 and later can utlize block scaled matrix multiply instructions. In order for low latency access to these scale factors in the fast inner loop over tensor core MMAs, it is important to ensure that the blocked scale factors are stored in a contiguous memory layout according to their access pattern. The block scaled matmul tensor core instructions compute the following product: C = (A * scale_a) @ (B * scale_b) where scale_a and scale_b are the blocked scale factors for the A and B matrices. Under block scaled matmul, each scale factor is broadcast and multiplied across a vector of elements from the A and B matrices, usually along their respective K axes. The number of elements of A and B over which each scale factor is broadcast is herein refered to as the vector size (VEC_SIZE). In a linear row-major layout, the scale factors would take the shape (M, K // VEC_SIZE) and (N, K // VEC_SIZE) [1] in global memory. However, to avoid non-contiguous memory access, it is beneficial to instead store the scale factors in a packed block layout. For the LHS matrix this layout is given by (M // 32 // 4, K // VEC_SIZE // 4, 32, 4, 4) [2]. In this way, each tensor core MMA in the fast inner loop over K blocks can achieve contiguous access of a block of 128 rows of scale factors along the M axis, for each BLOCK_M x BLOCK_K subtile of the matrix A. In order to conform with Triton's language semantics for dot_scaled, the scale factors are prepared in the above 5D layout [2], but are then logically transposed and reshaped into the 2D layout [1] expected by tl.dot_scaled. For more detailed information on the scale factor layout, see 1. https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-a-layout-1x 2. https://docs.nvidia.com/cuda/cublas/#d-block-scaling-factors-layout .. GENERATED FROM PYTHON SOURCE LINES 69-651 .. code-block:: Python # Scale preshuffling on AMD GPUs # # Similar to NVIDIA GPUs, on AMD GPUs with CDNA4 architecture, scaled MFMA instructions natively # support scaled matrix multiplication. Since it only supports OCP microscaling formats each # scale is an 8-bit value that scales 32 elements from A or B operand tensors. # Scales are stored as 8-bit tensors. Since MFMA instructions are warp-level instructions, that # means that each thread provides a fixed set of operand values to MFMA instructions. # # For example, in an MFMA instruction with shape 16x16x128: # - 4 threads contribute elements along the K dimension. # - 16 threads contribute elements along the M or N dimension. # # From the perspective of the scales tensor, even if the K dimension is stored contiguously in # shared memory, each thread sees its elements along K dim as strided due to interleaving with # other threads. This striding limits the ability to load scale values using vectorized memory # access. # # Our goal is to reorganize the scale tensor so that: # 1. Each thread stores the 4 scale values it needs for 4 MFMA ops in contiguous memory. # 2. Continuous threads access contiguous memory locations improving global memory coalescing when # bypassing LDS, which is especially beneficial for "skinny" matmuls. # # We consider two MFMA cases: one with non-K dimension 16, and one with 32. # In both, the minimum tile size for preshuffling is 32x32x256. # For example, for a 32x256 operand tile, the corresponding scale tensor has shape 32x8, # where each scale covers 32 elements along the K dimension. # # Each thread holds one scale per MFMA operation. We pack the 4 scale values # (for 4 different MFMA ops) next to each other in memory. # # Case 1: mfma_scaled_16x16x128 # # Packing order: mfma_op_0, mfma_op_2, mfma_op_1, mfma_op_3 # # K = 128 K = 128 # +------------+ +------------+ # M=16| MFMA op 0 | | MFMA op 1 | # +------------+ +------------+ # M=16| MFMA op 2 | | MFMA op 3 | # +------------+ +------------+ # # Case 2: mfma_scaled_32x32x64 # # Packing order: mfma_op_0, mfma_op_1, mfma_op_2, mfma_op_3 # # K=64 K=64 K=64 K=64 # +--------+ +--------+ +--------+ +--------+ # M=32| op 0 | | op 1 | | op 2 | | op 3 | # +--------+ +--------+ +--------+ +--------+ import argparse import torch import triton import triton.language as tl import triton.profiler as proton from triton.tools.tensor_descriptor import TensorDescriptor from triton.tools.mxfp import MXFP4Tensor, MXScaleTensor def is_cuda(): return triton.runtime.driver.active.get_current_target().backend == "cuda" def is_hip_cdna4(): target = triton.runtime.driver.active.get_current_target() return target is not None and target.backend == 'hip' and target.arch == 'gfx950' def supports_block_scaling(): return (is_cuda() and torch.cuda.get_device_capability()[0] == 10) or is_hip_cdna4() def _matmul_launch_metadata(grid, kernel, args): ret = {} M, N, K = args["M"], args["N"], args["K"] kernel_name = kernel.name if "ELEM_PER_BYTE_A" and "ELEM_PER_BYTE_B" and "VEC_SIZE" in args: if args["ELEM_PER_BYTE_A"] == 1 and args["ELEM_PER_BYTE_B"] == 1: kernel_name += "_mxfp8" elif args["ELEM_PER_BYTE_A"] == 1 and args["ELEM_PER_BYTE_B"] == 2: kernel_name += "_mixed" elif args["ELEM_PER_BYTE_A"] == 2 and args["ELEM_PER_BYTE_B"] == 2: if args["VEC_SIZE"] == 16: kernel_name += "_nvfp4" elif args["VEC_SIZE"] == 32: kernel_name += "_mxfp4" ret["name"] = f"{kernel_name} [M={M}, N={N}, K={K}]" ret["flops"] = 2.0 * M * N * K return ret @triton.jit(launch_metadata=_matmul_launch_metadata) def block_scaled_matmul_kernel( # a_desc, # a_scale_desc, # b_desc, # b_scale_desc, # c_desc, # M: tl.constexpr, # N: tl.constexpr, # K: tl.constexpr, # output_type: tl.constexpr, # ELEM_PER_BYTE_A: tl.constexpr, # ELEM_PER_BYTE_B: tl.constexpr, # VEC_SIZE: tl.constexpr, # BLOCK_M: tl.constexpr, # BLOCK_N: tl.constexpr, # BLOCK_K: tl.constexpr, # rep_m: tl.constexpr, # rep_n: tl.constexpr, # rep_k: tl.constexpr, # NUM_STAGES: tl.constexpr, # ): # if output_type == 0: output_dtype = tl.float32 elif output_type == 1: output_dtype = tl.float16 elif output_type == 2: output_dtype = tl.float8e4nv pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_M) pid_m = pid % num_pid_m pid_n = pid // num_pid_m offs_am = pid_m * BLOCK_M offs_bn = pid_n * BLOCK_N offs_k_a = 0 offs_k_b = 0 offs_scale_m = pid_m * rep_m offs_scale_n = pid_n * rep_n offs_scale_k = 0 MIXED_PREC: tl.constexpr = ELEM_PER_BYTE_A == 1 and ELEM_PER_BYTE_B == 2 accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in tl.range(0, tl.cdiv(K, BLOCK_K), num_stages=NUM_STAGES): a = a_desc.load([offs_am, offs_k_a]) b = b_desc.load([offs_bn, offs_k_b]) scale_a = a_scale_desc.load([0, offs_scale_m, offs_scale_k, 0, 0]) scale_b = b_scale_desc.load([0, offs_scale_n, offs_scale_k, 0, 0]) scale_a = scale_a.reshape(rep_m, rep_k, 32, 4, 4).trans(0, 3, 2, 1, 4).reshape(BLOCK_M, BLOCK_K // VEC_SIZE) scale_b = scale_b.reshape(rep_n, rep_k, 32, 4, 4).trans(0, 3, 2, 1, 4).reshape(BLOCK_N, BLOCK_K // VEC_SIZE) if MIXED_PREC: accumulator = tl.dot_scaled(a, scale_a, "e4m3", b.T, scale_b, "e2m1", accumulator) elif ELEM_PER_BYTE_A == 2 and ELEM_PER_BYTE_B == 2: accumulator = tl.dot_scaled(a, scale_a, "e2m1", b.T, scale_b, "e2m1", accumulator) else: accumulator = tl.dot_scaled(a, scale_a, "e4m3", b.T, scale_b, "e4m3", accumulator) offs_k_a += BLOCK_K // ELEM_PER_BYTE_A offs_k_b += BLOCK_K // ELEM_PER_BYTE_B offs_scale_k += rep_k c_desc.store([offs_am, offs_bn], accumulator.to(output_dtype)) def block_scaled_matmul(a_desc, a_scale_desc, b_desc, b_scale_desc, dtype_dst, M, N, K, rep_m, rep_n, rep_k, configs): output = torch.empty((M, N), dtype=dtype_dst, device="cuda") if dtype_dst == torch.float32: dtype_dst = 0 elif dtype_dst == torch.float16: dtype_dst = 1 elif dtype_dst == torch.float8_e4m3fn: dtype_dst = 2 else: raise ValueError(f"Unsupported dtype: {dtype_dst}") BLOCK_M = configs["BLOCK_SIZE_M"] BLOCK_N = configs["BLOCK_SIZE_N"] c_desc = TensorDescriptor.from_tensor(output, [BLOCK_M, BLOCK_N]) grid = (triton.cdiv(M, BLOCK_M) * triton.cdiv(N, BLOCK_N), 1) block_scaled_matmul_kernel[grid]( a_desc, a_scale_desc, b_desc, b_scale_desc, c_desc, M, N, K, dtype_dst, configs["ELEM_PER_BYTE_A"], configs["ELEM_PER_BYTE_B"], configs["VEC_SIZE"], configs["BLOCK_SIZE_M"], configs["BLOCK_SIZE_N"], configs["BLOCK_SIZE_K"], rep_m, rep_n, rep_k, configs["num_stages"], ) return output def initialize_block_scaled(M, N, K, block_scale_type="nvfp4", compute_reference=False): BLOCK_M = 128 BLOCK_N = 256 BLOCK_K = 256 if "fp4" in block_scale_type else 128 VEC_SIZE = 16 if block_scale_type == "nvfp4" else 32 assert block_scale_type in ["nvfp4", "mxfp4", "mxfp8", "mixed"], f"Invalid block scale type: {block_scale_type}" ELEM_PER_BYTE_A = 2 if "fp4" in block_scale_type else 1 ELEM_PER_BYTE_B = 1 if block_scale_type == "mxfp8" else 2 device = "cuda" a_ref = MXFP4Tensor(size=(M, K), device=device).random() # Similar to Hopper's wgmma symmetric fp8 instruction, the RHS is expected # to be in col-major layout for Blackwell's tcgen05.mma when using fp4 operands. # To conform to the expected semantics of tl.dot_scaled, (M, K) x (K, N), # the data is generated in col-major layout, packed along K for fp4, and then # logically transposed. Note that if one operand is of fp8 precision, unlike Hopper, # Blackwell supports both row-major and col-major layouts for the RHS matrix. # For the mixed-precision case, the fp4 RHS can be either in row or col-major layout. # But for performance reason, it is recommended to use col-major layout. If TMA is used # for the fp4 RHS operand load in mixed-precision dot, as in this tutorial, it must be # in col-major layout. b_ref = MXFP4Tensor(size=(N, K), device=device).random() if block_scale_type in ["mxfp8", "mixed"]: a_ref = a_ref.to(torch.float32) a = a_ref.to(torch.float8_e4m3fn) else: # Pack two fp4 elements per byte along K a = a_ref.to_packed_tensor(dim=1) if block_scale_type == "mxfp8": b_ref = b_ref.to(torch.float32) b = b_ref.to(torch.float8_e4m3fn) else: b = b_ref.to_packed_tensor(dim=1) b_ref = b_ref.to(torch.float32).T a_desc = TensorDescriptor.from_tensor(a, [BLOCK_M, BLOCK_K // ELEM_PER_BYTE_A]) b_desc = TensorDescriptor.from_tensor(b, [BLOCK_N, BLOCK_K // ELEM_PER_BYTE_B]) a_scale_shape = [M // 128, K // VEC_SIZE // 4, 32, 16] b_scale_shape = [N // 128, K // VEC_SIZE // 4, 32, 16] epsilon = 1e-8 a_scale = torch.rand(a_scale_shape, device=device) + epsilon b_scale = torch.rand(b_scale_shape, device=device) + epsilon if block_scale_type == "nvfp4": a_scale = a_scale.to(torch.float8_e4m3fn) b_scale = b_scale.to(torch.float8_e4m3fn) a_scale_ref = a_scale b_scale_ref = b_scale elif block_scale_type in ["mxfp4", "mxfp8", "mixed"]: a_scale_ref = MXScaleTensor(a_scale) b_scale_ref = MXScaleTensor(b_scale) a_scale = a_scale_ref.data b_scale = b_scale_ref.data rep_m = BLOCK_M // 128 rep_n = BLOCK_N // 128 rep_k = BLOCK_K // VEC_SIZE // 4 # Use 5D TMA descriptor [1, rep_m, rep_k, 2, 256] with uint8 elements. # With 256 elements we better utilize the L2 and don't require the TMA # engine to emit many small messages (16B) messages as with 32x16xu8. a_scale_block_shape = [1, rep_m, rep_k, 2, 256] b_scale_block_shape = [1, rep_n, rep_k, 2, 256] a_scale = a_scale.reshape(1, a_scale_shape[0], a_scale.shape[1], 2, 256) b_scale = b_scale.reshape(1, b_scale_shape[0], b_scale.shape[1], 2, 256) a_scale_desc = TensorDescriptor.from_tensor(a_scale, block_shape=a_scale_block_shape) b_scale_desc = TensorDescriptor.from_tensor(b_scale, block_shape=b_scale_block_shape) reference = None if compute_reference: a_scale_ref = a_scale_ref.to(torch.float32) b_scale_ref = b_scale_ref.to(torch.float32) def unpack_scale(packed): packed = packed.reshape(*packed.shape[:-2], 32, 4, 4) num_chunk_m, num_chunk_k, _, _, _ = packed.shape return packed.permute(0, 3, 2, 1, 4).reshape(num_chunk_m * 128, num_chunk_k * 4).contiguous() a_scale_ref = unpack_scale(a_scale_ref).repeat_interleave(VEC_SIZE, dim=1)[:M, :K] b_scale_ref = unpack_scale(b_scale_ref).repeat_interleave(VEC_SIZE, dim=1).T.contiguous()[:K, :N] reference = torch.matmul(a_ref.to(torch.float32) * a_scale_ref, b_ref * b_scale_ref) configs = { "BLOCK_SIZE_M": BLOCK_M, "BLOCK_SIZE_N": BLOCK_N, "BLOCK_SIZE_K": BLOCK_K, "num_stages": 4, "ELEM_PER_BYTE_A": ELEM_PER_BYTE_A, "ELEM_PER_BYTE_B": ELEM_PER_BYTE_B, "VEC_SIZE": VEC_SIZE, } return a_desc, a_scale_desc, b_desc, b_scale_desc, rep_m, rep_n, rep_k, configs, reference def validate_block_scaled(M, N, K, block_scale_type="nvfp4"): a_desc, a_scale, b_desc, b_scale, rep_m, rep_n, rep_k, configs, reference = initialize_block_scaled( M, N, K, block_scale_type, compute_reference=True) output = block_scaled_matmul(a_desc, a_scale, b_desc, b_scale, torch.float16, M, N, K, rep_m, rep_n, rep_k, configs) torch.testing.assert_close(reference, output.to(torch.float32), atol=1e-3, rtol=1e-3) print(f"✅ (pass {block_scale_type})") def bench_block_scaled(K, block_scale_type="nvfp4", reps=10): assert K % 128 == 0 M = 8192 N = 8192 print(f"Problem Shape = {M}x{N}x{K}") a_desc, a_scale, b_desc, b_scale, rep_m, rep_n, rep_k, configs, _ = initialize_block_scaled( M, N, K, block_scale_type, compute_reference=False) _ = block_scaled_matmul(a_desc, a_scale, b_desc, b_scale, torch.float16, M, N, K, rep_m, rep_n, rep_k, configs) proton.activate(0) for _ in range(reps): _ = block_scaled_matmul(a_desc, a_scale, b_desc, b_scale, torch.float16, M, N, K, rep_m, rep_n, rep_k, configs) proton.deactivate(0) print("Done benchmarking") def show_profile(profile_name): import triton.profiler.viewer as proton_viewer metric_names = ["time/ms"] metric_names = ["tflop/s"] + metric_names file_name = f"{profile_name}.hatchet" tree, metrics = proton_viewer.parse(metric_names, file_name) proton_viewer.print_tree(tree, metrics) @triton.jit def block_scaled_matmul_kernel_cdna4(a_ptr, b_ptr, c_ptr, a_scales_ptr, b_scales_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_ck, stride_cm, stride_cn, stride_asm, stride_ask, stride_bsn, stride_bsk, # Meta-parameters BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, mfma_nonkdim: tl.constexpr): """Kernel for computing the matmul C = A x B. A and B inputs are in the microscale fp4 (mxfp4) format. A_scales and B_scales are in e8m0 format. A has shape (M, K), B has shape (K, N) and C has shape (M, N) """ pid = tl.program_id(axis=0) num_pid_n = tl.cdiv(N, BLOCK_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n # We assume 32 elements along K share the same scale. SCALE_GROUP_SIZE: tl.constexpr = 32 num_k_iter = tl.cdiv(K, BLOCK_K // 2) # Create pointers for first block of A and B input matrices # The BLOCK sizes are of the elements and in fp4 we pack 2 per uint8 container. offs_k = tl.arange(0, BLOCK_K // 2) offs_k_split = offs_k offs_am = (pid_m * BLOCK_M + tl.arange(0, BLOCK_M)) % M offs_bn = (pid_n * BLOCK_N + tl.arange(0, BLOCK_N)) % N a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k_split[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k_split[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # Create pointers for the first block of A and B scales offs_asn = (pid_n * (BLOCK_N // 32) + tl.arange(0, (BLOCK_N // 32))) % N offs_ks = tl.arange(0, BLOCK_K // SCALE_GROUP_SIZE * 32) # B scales are N x K even though B operand is K x N. b_scale_ptrs = (b_scales_ptr + offs_asn[:, None] * stride_bsn + offs_ks[None, :] * stride_bsk) offs_asm = (pid_m * (BLOCK_M // 32) + tl.arange(0, (BLOCK_M // 32))) % M a_scale_ptrs = (a_scales_ptr + offs_asm[:, None] * stride_asm + offs_ks[None, :] * stride_ask) accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in range(0, num_k_iter): # Here we "undo" the shuffle done in global memory (shuffle_scales_cdna4 function). if mfma_nonkdim == 32: a_scales = tl.load(a_scale_ptrs).reshape(BLOCK_M // 32, BLOCK_K // SCALE_GROUP_SIZE // 8, 2, 32, 4, 1).permute(0, 3, 1, 4, 2, 5).reshape(BLOCK_M, BLOCK_K // SCALE_GROUP_SIZE) b_scales = tl.load(b_scale_ptrs).reshape(BLOCK_N // 32, BLOCK_K // SCALE_GROUP_SIZE // 8, 2, 32, 4, 1).permute(0, 3, 1, 4, 2, 5).reshape(BLOCK_N, BLOCK_K // SCALE_GROUP_SIZE) elif mfma_nonkdim == 16: a_scales = tl.load(a_scale_ptrs).reshape(BLOCK_M // 32, BLOCK_K // SCALE_GROUP_SIZE // 8, 4, 16, 2, 2, 1).permute(0, 5, 3, 1, 4, 2, 6).reshape(BLOCK_M, BLOCK_K // SCALE_GROUP_SIZE) b_scales = tl.load(b_scale_ptrs).reshape(BLOCK_N // 32, BLOCK_K // SCALE_GROUP_SIZE // 8, 4, 16, 2, 2, 1).permute(0, 5, 3, 1, 4, 2, 6).reshape(BLOCK_N, BLOCK_K // SCALE_GROUP_SIZE) a = tl.load(a_ptrs) b = tl.load(b_ptrs, cache_modifier=None) accumulator += tl.dot_scaled(a, a_scales, "e2m1", b, b_scales, "e2m1") # Advance the ptrs to the next K block. a_ptrs += (BLOCK_K // 2) * stride_ak b_ptrs += (BLOCK_K // 2) * stride_bk a_scale_ptrs += BLOCK_K * stride_ask b_scale_ptrs += BLOCK_K * stride_bsk c = accumulator.to(c_ptr.type.element_ty) # Write back the block of the output matrix C with masks. offs_cm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M).to(tl.int64) offs_cn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N).to(tl.int64) c_ptrs = (c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]) c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask, cache_modifier=".wt") def shuffle_scales_cdna4(scales: torch.Tensor, mfma_nonkdim: int): scales_shuffled = scales.clone() sm, sn = scales_shuffled.shape if mfma_nonkdim == 32: scales_shuffled = scales_shuffled.view(sm // 32, 32, sn // 8, 4, 2, 1) scales_shuffled = scales_shuffled.permute(0, 2, 4, 1, 3, 5).contiguous() elif mfma_nonkdim == 16: scales_shuffled = scales_shuffled.view(sm // 32, 2, 16, sn // 8, 2, 4, 1) scales_shuffled = scales_shuffled.permute(0, 3, 5, 2, 4, 1, 6).contiguous() scales_shuffled = scales_shuffled.view(sm // 32, sn * 32) return scales_shuffled def initialize_block_scaled_amd(M, N, K, mfma_nonkdim): BLOCK_M = 128 BLOCK_N = 128 BLOCK_K = 256 configs = { "BLOCK_M": BLOCK_M, "BLOCK_N": BLOCK_N, "BLOCK_K": BLOCK_K, "num_stages": 2, "num_warps": 8, "mfma_nonkdim": mfma_nonkdim, } torch.manual_seed(5) x = MXFP4Tensor(size=(M, K), device="cuda").random() w = MXFP4Tensor(size=(N, K), device="cuda").random() x_scales = torch.randint(124, 128, (K // 32, M), dtype=torch.uint8, device="cuda") w_scales = torch.randint(124, 128, (K // 32, N), dtype=torch.uint8, device="cuda") x_scales = x_scales.T w_scales = w_scales.T x_scales_shuffled = shuffle_scales_cdna4(x_scales, configs["mfma_nonkdim"]) w_scales_shuffled = shuffle_scales_cdna4(w_scales, configs["mfma_nonkdim"]) return ( x, w, x_scales, w_scales, x_scales_shuffled, w_scales_shuffled, configs, ) def validate_block_scaled_amd(M, N, K, block_scale_type="mxfp4", mfma_nonkdim=16): def e8m0_to_f32(x): x_f32 = 2**((x - 127).to(torch.float32)) x_f32[x_f32 == 128] = float("nan") return x_f32 def run_torch(x, w, x_scales, w_scales, dtype): # First convert the x and w inputs to f32. x_f32 = x.to(torch.float32) w_f32 = w.to(torch.float32) # Next convert the e8m0 scales to f32. x_scales = x_scales.repeat_interleave(32, dim=1).to(torch.float32) x_scales_f32 = e8m0_to_f32(x_scales) x_f32 = x_f32 * x_scales_f32 w_scales = w_scales.repeat_interleave(32, dim=1).to(torch.float32) w_scales_f32 = e8m0_to_f32(w_scales) w_f32 = w_f32 * w_scales_f32 return torch.mm(x_f32, w_f32.T).to(dtype) x_mxfp4, w_mxfp4, x_scales, w_scales, x_scales_triton, w_scales_triton, configs = \ initialize_block_scaled_amd(M, N, K, mfma_nonkdim) x = x_mxfp4.to_packed_tensor(dim=1) w = w_mxfp4.to_packed_tensor(dim=1) triton_out = torch.empty((M, N), device=x.device) triton_out = block_scaled_matmul_amd(x, w, x_scales_triton, w_scales_triton, configs) triton_out = triton_out.to(torch.float32) torch_out = run_torch(x_mxfp4, w_mxfp4, x_scales, w_scales, torch.float32) torch.testing.assert_close(torch_out, triton_out) print(f"✅ (pass {block_scale_type}, mfma_nonk_dim {mfma_nonkdim})") def block_scaled_matmul_amd(x, w, x_scales_triton, w_scales_triton, configs): M, K = x.shape N, K = w.shape w = w.T triton_out = torch.empty((M, N), device=x.device) kernel_kwargs = {} kernel_kwargs["matrix_instr_nonkdim"] = configs["mfma_nonkdim"] BLOCK_M = configs["BLOCK_M"] BLOCK_N = configs["BLOCK_N"] grid = (triton.cdiv(M, BLOCK_M) * triton.cdiv(N, BLOCK_N), 1) triton_out = torch.empty((M, N), device="cuda") grid = (triton.cdiv(M, BLOCK_M) * triton.cdiv(N, BLOCK_N), 1) block_scaled_matmul_kernel_cdna4[grid](x, w, triton_out, x_scales_triton, w_scales_triton, M, N, K, x.stride(0), x.stride(1), w.stride(0), w.stride(1), 0, triton_out.stride(0), triton_out.stride(1), x_scales_triton.stride(0), x_scales_triton.stride(1), w_scales_triton.stride(0), w_scales_triton.stride(1), BLOCK_M, BLOCK_N, configs["BLOCK_K"], configs["mfma_nonkdim"], num_warps=configs["num_warps"], num_stages=configs["num_stages"], **kernel_kwargs) triton_out = triton_out.to(torch.float32) return triton_out def bench_block_scaled_amd(K, block_scale_type="mxfp4", reps=10, mfma_nonkdim=16): assert K % 128 == 0 M = 8192 N = 8192 print(f"Problem Shape = {M}x{N}x{K}") x_mxfp4, w_mxfp4, x_scales, w_scales, x_scales_triton, w_scales_triton, configs = \ initialize_block_scaled_amd(M, N, K, mfma_nonkdim) x = x_mxfp4.to_packed_tensor(dim=1) w = w_mxfp4.to_packed_tensor(dim=1) proton.activate(0) for _ in range(reps): _ = block_scaled_matmul_amd(x, w, x_scales_triton, w_scales_triton, configs) proton.deactivate(0) print("Done benchmarking") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-K", type=int, required=False, default=512) parser.add_argument("--K_range", type=int, nargs=2) parser.add_argument("--K_step", type=int, default=512) parser.add_argument("--bench", action="store_true", default=True) parser.add_argument("--format", type=str, choices=["mxfp4", "nvfp4", "mxfp8", "mixed"], default="nvfp4") args = parser.parse_args() if not supports_block_scaling(): print("⛔ This example requires GPU support for block scaled matmul") else: if args.K and args.K_range is None: args.K_range = [args.K, args.K] args.K_step = 1 # doesn't matter as long as it's not 0 torch.manual_seed(42) if is_cuda(): validate_block_scaled(8192, 8192, 8192, block_scale_type=args.format) elif is_hip_cdna4(): assert args.format == "mxfp4", "AMD tutorial only supports mxpf4 format currently" validate_block_scaled_amd(8192, 8192, 8192, block_scale_type=args.format, mfma_nonkdim=16) validate_block_scaled_amd(8192, 8192, 8192, block_scale_type=args.format, mfma_nonkdim=32) if args.bench: proton.start("block_scaled_matmul", hook="triton") proton.deactivate(0) # Skip argument creation for K in range(args.K_range[0], args.K_range[1] + 1, args.K_step): if is_cuda(): bench_block_scaled(K, reps=10000, block_scale_type=args.format) elif is_hip_cdna4(): bench_block_scaled_amd(K, reps=10000, block_scale_type=args.format, mfma_nonkdim=16) bench_block_scaled_amd(K, reps=10000, block_scale_type=args.format, mfma_nonkdim=32) proton.finalize() show_profile("block_scaled_matmul") .. rst-class:: sphx-glr-script-out .. code-block:: none ⛔ This example requires GPU support for block scaled matmul .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.021 seconds) .. _sphx_glr_download_getting-started_tutorials_10-block-scaled-matmul.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 10-block-scaled-matmul.ipynb <10-block-scaled-matmul.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 10-block-scaled-matmul.py <10-block-scaled-matmul.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: 10-block-scaled-matmul.zip <10-block-scaled-matmul.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_