triton.language.make_tensor_descriptor¶
- triton.language.make_tensor_descriptor(base: tensor, shape: List[tensor], strides: List[tensor], block_shape: List[constexpr]) tensor_descriptor ¶
Make a tensor descriptor object
- Parameters:
base – the base pointer of the tensor, must be 16-byte aligned
shape – A list of non-negative integers representing the tensor shape
strides – A list of tensor strides. Leading dimensions must be multiples of 16-byte strides and the last dimension must be contiguous.
block_shape – The shape of block to be loaded/stored from global memory
Notes
On NVIDIA GPUs with TMA support, this will result in a TMA descriptor object and loads and stores from the descriptor will be backed by the TMA hardware.
Currently only 2-5 dimensional tensors are supported.
Example
@triton.jit def inplace_abs(in_out_ptr, M, N, M_BLOCK: tl.constexpr, N_BLOCK: tl.constexpr): desc = tl.make_tensor_descriptor( in_out_ptr, shape=[M, N], strides=[N, 1], block_shape=[M_BLOCK, N_BLOCK], ) moffset = tl.program_id(0) * M_BLOCK noffset = tl.program_id(1) * N_BLOCK value = desc.load([moffset, noffset]) desc.store([moffset, noffset], tl.abs(value)) # TMA descriptors require a global memory allocation def alloc_fn(size: int, alignment: int, stream: Optional[int]): return torch.empty(size, device="cuda", dtype=torch.int8) triton.set_allocator(alloc_fn) M, N = 256, 256 x = torch.randn(M, N, device="cuda") M_BLOCK, N_BLOCK = 32, 32 grid = (M / M_BLOCK, N / N_BLOCK) inplace_abs[grid](x, M, N, M_BLOCK, N_BLOCK)