TritonOps¶
tt.call
(triton::CallOp)¶
Call operation
Syntax:
operation ::= `tt.call` $callee `(` $operands `)` attr-dict `:` functional-type($operands, results)
The tt.call
operation represents a direct call to a function that is
within the same symbol scope as the call. The operands and result types of
the call must match the specified function type. The callee is encoded as a
symbol reference attribute named “callee”.
Example:
%2 = tt.call @my_add(%0, %1) : (f32, f32) -> f32
Traits: TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: CallOpInterface
, SymbolUserOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
callee | ::mlir::FlatSymbolRefAttr | flat symbol reference attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of any type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
variadic of any type |
tt.func
(triton::FuncOp)¶
An operation with a name containing a single SSACFG
region
Operations within the function cannot implicitly capture values defined
outside of the function, i.e. Functions are IsolatedFromAbove
. All
external references must use function arguments or attributes that establish
a symbolic connection (e.g. symbols referenced by name via a string
attribute like SymbolRefAttr). An external function declaration (used when
referring to a function declared in some other module) has no body. While
the MLIR textual form provides a nice inline syntax for function arguments,
they are internally represented as “block arguments” to the first block in
the region.
Only dialect attribute names may be specified in the attribute dictionaries for function arguments, results, or the function itself.
Example:
// External function definitions.
tt.func @abort()
tt.func @scribble(i32, i64, memref<? x 128 x f32, #layout_map0>) -> f64
// A function that returns its argument twice:
tt.func @count(%x: i64) -> (i64, i64)
attributes {fruit: "banana"} {
return %x, %x: i64, i64
}
// A function with an argument attribute
tt.func @example_fn_arg(%x: i32 {swift.self = unit})
// A function with a result attribute
tt.func @example_fn_result() -> (f64 {dialectName.attrName = 0 : i64})
// A function with an attribute
tt.func @example_fn_attr() attributes {dialectName.attrName = false}
Traits: AffineScope
, AutomaticAllocationScope
, IsolatedFromAbove
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: CallableOpInterface
, FunctionOpInterface
, OpAsmOpInterface
, Symbol
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
sym_name | ::mlir::StringAttr | string attribute |
function_type | ::mlir::TypeAttr | type attribute of function type |
sym_visibility | ::mlir::StringAttr | string attribute |
arg_attrs | ::mlir::ArrayAttr | Array of dictionary attributes |
res_attrs | ::mlir::ArrayAttr | Array of dictionary attributes |
tt.reinterpret_tensor_descriptor
(triton::ReinterpretTensorDescOp)¶
Reinterpret a pointer as a tensor descriptor
Syntax:
operation ::= `tt.reinterpret_tensor_descriptor` $rawDesc attr-dict `:` qualified(type($rawDesc)) `to` qualified(type($result))
This Op exists to help the transition from untyped raw TMA objects to typed Tensor descriptor objects. Ideally, we can remove this once the APIs are fully fleshed out.
Traits: AlwaysSpeculatableImplTrait
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ptr |
Results:¶
Result |
Description |
---|---|
|
Tensor descriptor type ( |
tt.return
(triton::ReturnOp)¶
Function return operation
Syntax:
operation ::= `tt.return` attr-dict ($srcs^ `:` type($srcs))?
The tt.return
operation represents a return operation within a function.
The operation takes variable number of operands and produces no results.
The operand number and types must match the signature of the function
that contains the operation.
Example:
tt.func @foo() : (i32, f8) {
...
tt.return %0, %1 : i32, f8
}
Traits: AlwaysSpeculatableImplTrait
, HasParent<FuncOp>
, ReturnLike
, TensorSizeTrait
, Terminator
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, RegionBranchTerminatorOpInterface
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
variadic of any type |
tt.addptr
(triton::AddPtrOp)¶
Syntax:
operation ::= `tt.addptr` $ptr `,` $offset attr-dict `:` type($result) `,` type($offset)
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultEncoding
, SameOperandsAndResultShape
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ptr or ranked tensor of ptr values |
|
integer or ranked tensor of integer values |
Results:¶
Result |
Description |
---|---|
|
ptr or ranked tensor of ptr values |
tt.advance
(triton::AdvanceOp)¶
Advance a tensor pointer by offsets
Syntax:
operation ::= `tt.advance` $ptr `,` `[` $offsets `]` attr-dict `:` type($result)
Traits: AlwaysSpeculatableImplTrait
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ptr |
|
variadic of 32-bit signless integer |
Results:¶
Result |
Description |
---|---|
|
ptr |
tt.assert
(triton::AssertOp)¶
Device-side assert, as in CUDA for correctness checking
Syntax:
operation ::= `tt.assert` $condition `,` $message attr-dict `:` type($condition)
tt.assert
takes a condition tensor and a message string.
If the condition is false, the message is printed, and the program is aborted.
Traits: TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Write on ::mlir::triton::GlobalMemory}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
message | ::mlir::StringAttr | string attribute |
Operands:¶
Operand |
Description |
---|---|
|
1-bit signless integer or tensor of 1-bit signless integer values |
tt.atomic_cas
(triton::AtomicCASOp)¶
Atomic cas
Syntax:
operation ::= `tt.atomic_cas` $sem `,` $scope `,` $ptr `,` $cmp `,` $val attr-dict `:`
functional-type(operands, $result)
compare $cmp with data $old at location $ptr,
if $old == $cmp, store $val to $ptr,
else store $old to $ptr,
return $old
Traits: SameOperandsAndResultEncoding
, SameOperandsAndResultShape
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Read on ::mlir::triton::GlobalMemory}
, MemoryEffects::Effect{MemoryEffects::Write on ::mlir::triton::GlobalMemory}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
sem | ::mlir::triton::MemSemanticAttr | allowed 32-bit signless integer cases: 1, 2, 3, 4{{% markdown %}}Enum cases: * relaxed (`RELAXED`) * acquire (`ACQUIRE`) * release (`RELEASE`) * acq_rel (`ACQUIRE_RELEASE`){{% /markdown %}} |
scope | ::mlir::triton::MemSyncScopeAttr | allowed 32-bit signless integer cases: 1, 2, 3{{% markdown %}}Enum cases: * gpu (`GPU`) * cta (`CTA`) * sys (`SYSTEM`){{% /markdown %}} |
Operands:¶
Operand |
Description |
---|---|
|
ptr or ranked tensor of ptr values |
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
Results:¶
Result |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
tt.atomic_rmw
(triton::AtomicRMWOp)¶
Atomic rmw
Syntax:
operation ::= `tt.atomic_rmw` $atomic_rmw_op `,` $sem `,` $scope `,` $ptr `,` $val (`,` $mask^)? attr-dict `:`
functional-type(operands, $result)
load data at $ptr, do $rmw_op with $val, and store result to $ptr.
return old value at $ptr
Traits: SameOperandsAndResultEncoding
, SameOperandsAndResultShape
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Read on ::mlir::triton::GlobalMemory}
, MemoryEffects::Effect{MemoryEffects::Write on ::mlir::triton::GlobalMemory}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
atomic_rmw_op | ::mlir::triton::RMWOpAttr | allowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10{{% markdown %}}Enum cases: * and (`AND`) * or (`OR`) * xor (`XOR`) * add (`ADD`) * fadd (`FADD`) * max (`MAX`) * min (`MIN`) * umax (`UMAX`) * umin (`UMIN`) * exch (`XCHG`){{% /markdown %}} |
sem | ::mlir::triton::MemSemanticAttr | allowed 32-bit signless integer cases: 1, 2, 3, 4{{% markdown %}}Enum cases: * relaxed (`RELAXED`) * acquire (`ACQUIRE`) * release (`RELEASE`) * acq_rel (`ACQUIRE_RELEASE`){{% /markdown %}} |
scope | ::mlir::triton::MemSyncScopeAttr | allowed 32-bit signless integer cases: 1, 2, 3{{% markdown %}}Enum cases: * gpu (`GPU`) * cta (`CTA`) * sys (`SYSTEM`){{% /markdown %}} |
Operands:¶
Operand |
Description |
---|---|
|
ptr or ranked tensor of ptr values |
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
|
1-bit signless integer or ranked tensor of 1-bit signless integer values |
Results:¶
Result |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
tt.bitcast
(triton::BitcastOp)¶
Cast between types of the same bitwidth
Syntax:
operation ::= `tt.bitcast` $src attr-dict `:` type($src) `->` type($result)
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultEncoding
, SameOperandsAndResultShape
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
Results:¶
Result |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
tt.broadcast
(triton::BroadcastOp)¶
Broadcast a tensor
Syntax:
operation ::= `tt.broadcast` $src attr-dict `:` type($src) `->` type($result)
For a given tensor, broadcast changes one or more dimensions with size 1 to a new size, e.g. tensor<1x32x1xf32> -> tensor<2x32x4xf32>. You cannot change the size of a non-1 dimension.
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
, SameOperandsAndResultEncoding
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
tt.cat
(triton::CatOp)¶
Concatenate 2 tensors
Syntax:
operation ::= `tt.cat` $lhs `,` $rhs attr-dict `:` type($lhs) `->` type($result)
Traits: SameOperandsAndResultElementType
, SameTypeOperands
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
|
ranked tensor of floating-point or integer or ptr values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
tt.clampf
(triton::ClampFOp)¶
Clamp operation for floating point types
Syntax:
operation ::= `tt.clampf` $x `,` $min `,` $max `,` `propagateNan` `=` $propagateNan attr-dict `:` type($result)
Clamp operation for floating point types.
The operation takes three arguments: x, min, and max. It returns a tensor of the same shape as x with its values clamped to the range [min, max].
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultType
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
propagateNan | ::mlir::triton::PropagateNanAttr | allowed 32-bit signless integer cases: 0, 65535{{% markdown %}}Enum cases: * none (`NONE`) * all (`ALL`){{% /markdown %}} |
Operands:¶
Operand |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values |
|
floating-point or ranked tensor of floating-point values |
|
floating-point or ranked tensor of floating-point values |
Results:¶
Result |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values |
tt.dot
(triton::DotOp)¶
Dot
Syntax:
operation ::= `tt.dot` $a`,` $b`,` $c (`,` `inputPrecision` `=` $inputPrecision^)? attr-dict `:`
type($a) `*` type($b) `->` type($d)
$d = matrix_multiply($a, $b) + $c. $inputPrecision describes how to exercise the TC when the inputs are f32. It can be one of: tf32, tf32x3, ieee. tf32: use TC with tf32 ops. tf32x3: implement the 3xTF32 trick. For more info see the pass in F32DotTC.cpp ieee: don’t use TC, implement dot in software. If the GPU does not have Tensor cores or the inputs are not f32, this flag is ignored.
Traits: AlwaysSpeculatableImplTrait
, DotLike
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
inputPrecision | ::mlir::triton::InputPrecisionAttr | allowed 32-bit signless integer cases: 0, 1, 2{{% markdown %}}Enum cases: * tf32 (`TF32`) * tf32x3 (`TF32x3`) * ieee (`IEEE`){{% /markdown %}} |
maxNumImpreciseAcc | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of floating-point or integer values |
|
ranked tensor of floating-point or integer values |
|
ranked tensor of floating-point or integer values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer values |
tt.dot_scaled
(triton::DotScaledOp)¶
Dot_scaled
Syntax:
operation ::= `tt.dot_scaled` $lhs (`scale` $lhs_scale^)? `,` $rhs (`scale` $rhs_scale^)? `,` $c `lhs` `=` $lhs_type `rhs` `=` $rhs_type attr-dict
`:` type($lhs) (`,` type($lhs_scale)^)? `*` type($rhs) (`,` type($rhs_scale)^)? `->` type($d)
$d = matrix_multiply(scale($lhs, $lhs_scale), scale($rhs, $rhs_scale)) + $c. Where scale(x, s) is a function that applies the scale per block following microscaling spec.
Traits: AlwaysSpeculatableImplTrait
, AttrSizedOperandSegments
, DotLike
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
lhs_type | ::mlir::triton::ScaleDotElemTypeAttr | allowed 32-bit signless integer cases: 0, 1, 2, 3, 4, 5{{% markdown %}}Enum cases: * e4m3 (`E4M3`) * e5m2 (`E5M2`) * e2m3 (`E2M3`) * e3m2 (`E3M2`) * e2m1 (`E2M1`) * bf16 (`BF16`){{% /markdown %}} |
rhs_type | ::mlir::triton::ScaleDotElemTypeAttr | allowed 32-bit signless integer cases: 0, 1, 2, 3, 4, 5{{% markdown %}}Enum cases: * e4m3 (`E4M3`) * e5m2 (`E5M2`) * e2m3 (`E2M3`) * e3m2 (`E3M2`) * e2m1 (`E2M1`) * bf16 (`BF16`){{% /markdown %}} |
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of floating-point or 8-bit signless integer values |
|
ranked tensor of floating-point or 8-bit signless integer values |
|
ranked tensor of floating-point values |
|
ranked tensor of 8-bit signless integer values |
|
ranked tensor of 8-bit signless integer values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point values |
tt.elementwise_inline_asm
(triton::ElementwiseInlineAsmOp)¶
Inline assembly applying an elementwise operation to a group of packed elements.
Syntax:
operation ::= `tt.elementwise_inline_asm` $asm_string attr-dict ($args^ `:` type($args))? `->` type($result)
Runs an inline asm block to generate one or more tensors.
The asm block is given packed_element
elements at a time. Exactly which
elems it receives is unspecified.
Traits: Elementwise
, SameOperandsAndResultEncoding
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
asm_string | ::mlir::StringAttr | string attribute |
constraints | ::mlir::StringAttr | string attribute |
pure | ::mlir::BoolAttr | bool attribute |
packed_element | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
Results:¶
Result |
Description |
---|---|
|
variadic of floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
tt.expand_dims
(triton::ExpandDimsOp)¶
Expand_dims
Syntax:
operation ::= `tt.expand_dims` $src attr-dict `:` type($src) `->` type($result)
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
axis | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
tt.experimental_descriptor_load
(triton::ExperimentalDescriptorLoadOp)¶
Load from descriptor
Syntax:
operation ::= `tt.experimental_descriptor_load` $desc `[` $indices `]`
oilist(
`cacheModifier` `=` $cache |
`evictionPolicy` `=` $evict
)
attr-dict `:` qualified(type($desc)) `->` type($result)
This operation will be lowered to Nvidia TMA load operation on targets supporting it.
desc
is a tensor descriptor object.
The destination tensor type and shape must match the descriptor otherwise the result is undefined.
This is an escape hatch and is only there for testing/experimenting. This op will be removed in the future.
Traits: TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Read on ::mlir::triton::GlobalMemory}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
cache | ::mlir::triton::CacheModifierAttr | allowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7{{% markdown %}}Enum cases: * none (`NONE`) * ca (`CA`) * cg (`CG`) * wb (`WB`) * cs (`CS`) * wt (`WT`) * cv (`CV`){{% /markdown %}} |
evict | ::mlir::triton::EvictionPolicyAttr | allowed 32-bit signless integer cases: 1, 2, 3{{% markdown %}}Enum cases: * evict_normal (`NORMAL`) * evict_first (`EVICT_FIRST`) * evict_last (`EVICT_LAST`){{% /markdown %}} |
Operands:¶
Operand |
Description |
---|---|
|
Tensor descriptor type ( |
|
variadic of 32-bit signless integer |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
tt.experimental_descriptor_store
(triton::ExperimentalDescriptorStoreOp)¶
Store value based on descriptor
Syntax:
operation ::= `tt.experimental_descriptor_store` $desc `[` $indices `]` `,` $src
attr-dict `:` qualified(type($desc)) `,` type($src)
This operation will be lowered to Nvidia TMA store operation on targets supporting it.
desc
is a tensor descriptor object.
The shape and types of src
must match the descriptor otherwise the result is undefined.
This is an escape hatch and is only there for testing/experimenting. This op will be removed in the future.
Traits: TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Read on ::mlir::triton::GlobalMemory, MemoryEffects::Write on ::mlir::triton::GlobalMemory}
Operands:¶
Operand |
Description |
---|---|
|
Tensor descriptor type ( |
|
ranked tensor of floating-point or integer or ptr values |
|
variadic of 32-bit signless integer |
tt.experimental_tensormap_create
(triton::ExperimentalTensormapCreateOp)¶
Create a new TMA descriptor on device
Syntax:
operation ::= `tt.experimental_tensormap_create` $desc_ptr `,` $global_address `,`
`[` $box_dim `]` `,`
`[` $global_dim `]` `,`
`[` $global_stride `]` `,`
`[` $element_stride `]`
attr-dict `:` functional-type(operands, results)
Traits: AttrSizedOperandSegments
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Read on ::mlir::triton::GlobalMemory, MemoryEffects::Write on ::mlir::triton::GlobalMemory}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
elem_type | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative whose maximum value is 12 |
interleave_layout | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative whose maximum value is 2 |
swizzle_mode | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative whose maximum value is 3 |
fill_mode | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative whose maximum value is 1 |
Operands:¶
Operand |
Description |
---|---|
|
Pointer type ( |
|
Pointer type ( |
|
variadic of 32-bit signless integer |
|
variadic of 32-bit signless integer |
|
variadic of 64-bit signless integer |
|
variadic of 32-bit signless integer |
tt.experimental_tensormap_fenceproxy_acquire
(triton::ExperimentalTensormapFenceproxyAcquireOp)¶
Acquire fence on a tensormap object
Syntax:
operation ::= `tt.experimental_tensormap_fenceproxy_acquire` $desc_ptr attr-dict `:` qualified(type($desc_ptr))
Traits: TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Write on ::mlir::triton::GlobalMemory}
Operands:¶
Operand |
Description |
---|---|
|
Pointer type ( |
tt.extern_elementwise
(triton::ExternElementwiseOp)¶
Syntax:
operation ::= `tt.extern_elementwise` operands attr-dict `:` functional-type(operands, $result)
call an external function $symbol implemented in $libpath/$libname with $args return $libpath/$libname:$symbol($args…)
Traits: Elementwise
, SameOperandsAndResultEncoding
, SameVariadicOperandSize
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, MemoryEffectOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
libname | ::mlir::StringAttr | string attribute |
libpath | ::mlir::StringAttr | string attribute |
symbol | ::mlir::StringAttr | string attribute |
pure | ::mlir::BoolAttr | bool attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
Results:¶
Result |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
tt.fp_to_fp
(triton::FpToFpOp)¶
Floating point casting for custom types
Syntax:
operation ::= `tt.fp_to_fp` $src attr-dict (`,` `rounding` `=` $rounding^)? `:` type($src) `->` type($result)
Floating point casting for custom types (F8), and non-default rounding modes.
F8 <-> FP16, BF16, FP32, FP64
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultEncoding
, SameOperandsAndResultShape
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
rounding | ::mlir::triton::RoundingModeAttr | allowed 32-bit signless integer cases: 0, 1{{% markdown %}}Enum cases: * rtz (`RTZ`) * rtne (`RTNE`){{% /markdown %}} |
Operands:¶
Operand |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values |
Results:¶
Result |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values |
tt.get_num_programs
(triton::GetNumProgramsOp)¶
Syntax:
operation ::= `tt.get_num_programs` $axis attr-dict `:` type($result)
Traits: AlwaysSpeculatableImplTrait
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
axis | ::mlir::triton::ProgramIDDimAttr | allowed 32-bit signless integer cases: 0, 1, 2{{% markdown %}}Enum cases: * x (`X`) * y (`Y`) * z (`Z`){{% /markdown %}} |
Results:¶
Result |
Description |
---|---|
|
32-bit signless integer |
tt.get_program_id
(triton::GetProgramIdOp)¶
Syntax:
operation ::= `tt.get_program_id` $axis attr-dict `:` type($result)
Traits: AlwaysSpeculatableImplTrait
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
axis | ::mlir::triton::ProgramIDDimAttr | allowed 32-bit signless integer cases: 0, 1, 2{{% markdown %}}Enum cases: * x (`X`) * y (`Y`) * z (`Z`){{% /markdown %}} |
Results:¶
Result |
Description |
---|---|
|
32-bit signless integer |
tt.histogram
(triton::HistogramOp)¶
Return a histgram of the inputs.
Syntax:
operation ::= `tt.histogram` $src attr-dict `:` type($src) `->` type($result)
Return the histogram of the input tensor. The number of bins is equal to the dimension of the output tensor. Each bins has a width of 1 and bins start at 0.
Traits: AlwaysSpeculatableImplTrait
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of integer values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of integer values |
tt.int_to_ptr
(triton::IntToPtrOp)¶
Cast int64 to pointer
Syntax:
operation ::= `tt.int_to_ptr` $src attr-dict `:` type($src) `->` type($result)
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultEncoding
, SameOperandsAndResultShape
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
64-bit signless integer or tensor of 64-bit signless integer values |
Results:¶
Result |
Description |
---|---|
|
ptr or ranked tensor of ptr values |
tt.join
(triton::JoinOp)¶
Join two tensors along a new, minor dimension
Syntax:
operation ::= `tt.join` $lhs `,` $rhs attr-dict `:` type($lhs) `->` type($result)
For example, if the two input tensors are 4x8xf32, returns a tensor of shape 4x8x2xf32.
Because Triton tensors always have a power-of-two number of elements, the two input tensors must have the same shape.
Traits: SameTypeOperands
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
|
ranked tensor of floating-point or integer or ptr values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
tt.load
(triton::LoadOp)¶
Load from a tensor of pointers or from a tensor pointer
Syntax:
operation ::= `tt.load` $ptr (`,` $mask^)? (`,` $other^)?
oilist(
`cacheModifier` `=` $cache |
`evictionPolicy` `=` $evict
)
attr-dict `:` type($ptr)
Traits: AttrSizedOperandSegments
, SameLoadStoreOperandsAndResultEncoding
, SameLoadStoreOperandsAndResultShape
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: InferTypeOpInterface
, MemoryEffectOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
boundaryCheck | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
padding | ::mlir::triton::PaddingOptionAttr | allowed 32-bit signless integer cases: 1, 2{{% markdown %}}Enum cases: * zero (`PAD_ZERO`) * nan (`PAD_NAN`){{% /markdown %}} |
cache | ::mlir::triton::CacheModifierAttr | allowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7{{% markdown %}}Enum cases: * none (`NONE`) * ca (`CA`) * cg (`CG`) * wb (`WB`) * cs (`CS`) * wt (`WT`) * cv (`CV`){{% /markdown %}} |
evict | ::mlir::triton::EvictionPolicyAttr | allowed 32-bit signless integer cases: 1, 2, 3{{% markdown %}}Enum cases: * evict_normal (`NORMAL`) * evict_first (`EVICT_FIRST`) * evict_last (`EVICT_LAST`){{% /markdown %}} |
isVolatile | ::mlir::BoolAttr | bool attribute |
Operands:¶
Operand |
Description |
---|---|
|
ptr or ranked tensor of ptr values or ptr |
|
1-bit signless integer or ranked tensor of 1-bit signless integer values |
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
Results:¶
Result |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
tt.make_range
(triton::MakeRangeOp)¶
Make range
Syntax:
operation ::= `tt.make_range` attr-dict `:` type($result)
Returns an 1D int32 tensor.
Values span from $start to $end (exclusive), with step = 1
Traits: AlwaysSpeculatableImplTrait
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
start | ::mlir::IntegerAttr | 32-bit signless integer attribute |
end | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of integer values |
tt.make_tensor_descriptor
(triton::MakeTensorDescOp)¶
Make a tensor descriptor type with meta information of the parent tensor and block size
Syntax:
operation ::= `tt.make_tensor_descriptor` $base `,` `[` $shape `]` `,` `[` $strides `]` attr-dict `:` type($base) `,` type($result)
tt.make_tensor_descriptor
takes both meta information of the parent tensor and the block size,
and returns a descriptor object which can be used to load/store from the tensor in global memory.
Traits: AlwaysSpeculatableImplTrait
, SameVariadicOperandSize
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ptr |
|
variadic of 32-bit signless integer |
|
variadic of 64-bit signless integer |
Results:¶
Result |
Description |
---|---|
|
Tensor descriptor type ( |
tt.make_tensor_ptr
(triton::MakeTensorPtrOp)¶
Make a tensor pointer type with meta information of the parent tensor and the block specified
Syntax:
operation ::= `tt.make_tensor_ptr` $base `,` `[` $shape `]` `,` `[` $strides `]` `,` `[` $offsets `]` attr-dict `:` type($result)
tt.make_tensor_ptr
takes both meta information of the parent tensor and the block tensor, then it returns a
pointer to the block tensor, e.g. returns a type of tt.ptr<tensor<8x8xf16>>
.
Traits: AlwaysSpeculatableImplTrait
, SameVariadicOperandSize
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
order | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
Operands:¶
Operand |
Description |
---|---|
|
ptr |
|
variadic of 64-bit signless integer |
|
variadic of 64-bit signless integer |
|
variadic of 32-bit signless integer |
Results:¶
Result |
Description |
---|---|
|
ptr |
tt.mulhiui
(triton::MulhiUIOp)¶
Most significant N bits of the 2N-bit product of two integers
Syntax:
operation ::= `tt.mulhiui` $x `,` $y attr-dict `:` type($x)
Most significant N bits of the 2N-bit product of two integers.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultType
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
integer or ranked tensor of integer values |
|
integer or ranked tensor of integer values |
Results:¶
Result |
Description |
---|---|
|
integer or ranked tensor of integer values |
tt.precise_divf
(triton::PreciseDivFOp)¶
Precise div for floating point types
Syntax:
operation ::= `tt.precise_divf` $x `,` $y attr-dict `:` type($x)
Precise div for floating point types.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultType
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values |
|
floating-point or ranked tensor of floating-point values |
Results:¶
Result |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values |
tt.precise_sqrt
(triton::PreciseSqrtOp)¶
Precise sqrt for floating point types
Syntax:
operation ::= `tt.precise_sqrt` $x attr-dict `:` type($x)
Precise sqrt for floating point types.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultType
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values |
Results:¶
Result |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values |
tt.print
(triton::PrintOp)¶
Device-side print, as in CUDA for debugging
Syntax:
operation ::= `tt.print` $prefix attr-dict (`:` $args^ `:` type($args))?
tt.print
takes a literal string prefix and an arbitrary number of scalar or tensor arguments that should be printed.
format are generated automatically from the arguments.
Traits: SameVariadicOperandSize
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Write on ::mlir::triton::GlobalMemory}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
prefix | ::mlir::StringAttr | string attribute |
hex | ::mlir::BoolAttr | bool attribute |
isSigned | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
tt.ptr_to_int
(triton::PtrToIntOp)¶
Cast pointer to int64
Syntax:
operation ::= `tt.ptr_to_int` $src attr-dict `:` type($src) `->` type($result)
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultEncoding
, SameOperandsAndResultShape
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ptr or ranked tensor of ptr values |
Results:¶
Result |
Description |
---|---|
|
64-bit signless integer or tensor of 64-bit signless integer values |
tt.reduce
(triton::ReduceOp)¶
Reduction using generic combination algorithm
Traits: AlwaysSpeculatableImplTrait
, SameOperandsEncoding
, SameOperandsShape
, SingleBlock
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
axis | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of ranked tensor of floating-point or integer or ptr values |
Results:¶
Result |
Description |
---|---|
|
variadic of floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
tt.reduce.return
(triton::ReduceReturnOp)¶
Terminator for reduce operator
Syntax:
operation ::= `tt.reduce.return` $result attr-dict `:` type($result)
Traits: AlwaysSpeculatableImplTrait
, HasParent<ReduceOp>
, ReturnLike
, TensorSizeTrait
, Terminator
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, RegionBranchTerminatorOpInterface
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
variadic of any type |
tt.reshape
(triton::ReshapeOp)¶
Reinterpret a tensor to a different shape. It may change elements order if the attribute is set.
Syntax:
operation ::= `tt.reshape` $src (`allow_reorder` $allow_reorder^)? (`efficient_layout` $efficient_layout^)? attr-dict `:` type($src) `->` type($result)
reinterpret a tensor to a different shape.
If allow_reorder is set the compiler is free to change the order of elements to generate more efficient code.
If efficient_layout is set, this is a hint that the destination layout should be kept for performance reason. The compiler is still free to change it for better performance.
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
allow_reorder | ::mlir::UnitAttr | unit attribute |
efficient_layout | ::mlir::UnitAttr | unit attribute |
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
tt.scan
(triton::ScanOp)¶
Associative scan using generic combination algorithm
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultEncoding
, SameOperandsAndResultShape
, SingleBlock
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
axis | ::mlir::IntegerAttr | 32-bit signless integer attribute |
reverse | ::mlir::BoolAttr | bool attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of ranked tensor of floating-point or integer or ptr values |
Results:¶
Result |
Description |
---|---|
|
variadic of ranked tensor of floating-point or integer or ptr values |
tt.scan.return
(triton::ScanReturnOp)¶
Terminator for scan operator
Syntax:
operation ::= `tt.scan.return` $result attr-dict `:` type($result)
Traits: AlwaysSpeculatableImplTrait
, HasParent<ScanOp>
, ReturnLike
, TensorSizeTrait
, Terminator
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, RegionBranchTerminatorOpInterface
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
variadic of any type |
tt.splat
(triton::SplatOp)¶
Splat
Syntax:
operation ::= `tt.splat` $src attr-dict `:` type($src) `->` type($result)
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
, SameOperandsAndResultEncoding
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
tt.split
(triton::SplitOp)¶
Splits a tensor into two, along its last dimension
Syntax:
operation ::= `tt.split` $src attr-dict `:` type($src) `->` type($outLHS)
The input must be a tensor whose last dimension has size 2. Returns two tensors, src[…, 0] and src[…, 1].
For example, if the input shape is 4x8x2xf32, returns two tensors of shape 4x8xf32.
Traits: TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
|
ranked tensor of floating-point or integer or ptr values |
tt.store
(triton::StoreOp)¶
Store by a tensor of pointers or by a tensor pointer
Syntax:
operation ::= `tt.store` $ptr `,` $value (`,` $mask^)?
oilist(`cacheModifier` `=` $cache | `evictionPolicy` `=` $evict)
attr-dict `:` type($ptr)
Traits: SameLoadStoreOperandsEncoding
, SameLoadStoreOperandsShape
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Write on ::mlir::triton::GlobalMemory}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
boundaryCheck | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
cache | ::mlir::triton::CacheModifierAttr | allowed 32-bit signless integer cases: 1, 2, 3, 4, 5, 6, 7{{% markdown %}}Enum cases: * none (`NONE`) * ca (`CA`) * cg (`CG`) * wb (`WB`) * cs (`CS`) * wt (`WT`) * cv (`CV`){{% /markdown %}} |
evict | ::mlir::triton::EvictionPolicyAttr | allowed 32-bit signless integer cases: 1, 2, 3{{% markdown %}}Enum cases: * evict_normal (`NORMAL`) * evict_first (`EVICT_FIRST`) * evict_last (`EVICT_LAST`){{% /markdown %}} |
Operands:¶
Operand |
Description |
---|---|
|
ptr or ranked tensor of ptr values or ptr |
|
floating-point or ranked tensor of floating-point values or integer or ranked tensor of integer values or ptr or ranked tensor of ptr values or ptr |
|
1-bit signless integer or ranked tensor of 1-bit signless integer values |
tt.trans
(triton::TransOp)¶
Rearrange the dimensions of a tensor
Syntax:
operation ::= `tt.trans` $src attr-dict `:` type($src) `->` type($result)
For example, given a tensor x with shape [1,2,4], transpose(x) with order=[2,0,1] rearranges the tensor to have shape [4,1,2].
Although this op is called “trans”, it implements both tl.trans() and tl.permute(). (“permute” might be a better name, but it’s called “trans” because originally it only supported 2D tensors.)
Implementation note on encodings:¶
In the TritonGPU dialect (and probably others), an encoding is chosen for this op’s output so it’s a nop from the perspective of code generation.
For example, suppose tensor x has an encoding such that GPU thread [i,j,k] has a register containing element [i,j,k] of the tensor. Now we transpose x with order [2,1,0], i.e. we reverse the order of its dimensions. In TritonGPU, we will choose a layout for the output of the transpose so that GPU thread [i,j,k] has element [k,j,i] of transpose(x). But this is the same element it had before! All we’ve done is “rename” the element that thread [i,j,k] has.
The “real” transpose – i.e. moving data between GPU threads – occurs in convertLayout ops that appear before and/or after the operation.
We do this so that you can chain multiple data-movement ops (e.g. transpose+reshape+concat) without going to shared memory after each one.
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
, TensorSizeTrait
, VerifyTensorLayoutsTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TransposeOpInterface
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
order | ::mlir::DenseI32ArrayAttr | i32 dense array attribute |
Operands:¶
Operand |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |
Results:¶
Result |
Description |
---|---|
|
ranked tensor of floating-point or integer or ptr values |