Note
Go to the end to download the full example code.
Libdevice (tl.extra.libdevice) function¶
Triton can invoke a custom function from an external library. In this example, we will use the libdevice library to apply asin on a tensor.
Please refer to CUDA libdevice-users-guide and/or HIP device-lib source code regarding the semantics of all available libdevice functions.
In libdevice.py, we try to aggregate functions with the same computation but different data types together. For example, both __nv_asin and __nv_asinf calculate the principal value of the arc sine of the input, but __nv_asin operates on double and __nv_asinf operates on float. Triton automatically selects the correct underlying device function to invoke based on input and output types.
asin Kernel¶
import torch
import triton
import triton.language as tl
import inspect
import os
from triton.language.extra import libdevice
from pathlib import Path
DEVICE = triton.runtime.driver.active.get_active_torch_device()
@triton.jit
def asin_kernel(
x_ptr,
y_ptr,
n_elements,
BLOCK_SIZE: tl.constexpr,
):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(x_ptr + offsets, mask=mask)
x = libdevice.asin(x)
tl.store(y_ptr + offsets, x, mask=mask)
Using the default libdevice library path¶
We can use the default libdevice library path encoded in triton/language/math.py
torch.manual_seed(0)
size = 98432
x = torch.rand(size, device=DEVICE)
output_triton = torch.zeros(size, device=DEVICE)
output_torch = torch.asin(x)
assert x.is_cuda and output_triton.is_cuda
n_elements = output_torch.numel()
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']), )
asin_kernel[grid](x, output_triton, n_elements, BLOCK_SIZE=1024)
print(output_torch)
print(output_triton)
print(f'The maximum difference between torch and triton is '
f'{torch.max(torch.abs(output_torch - output_triton))}')
tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device='cuda:0')
tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device='cuda:0')
The maximum difference between torch and triton is 2.384185791015625e-07
Customize the libdevice library path¶
We can also customize the libdevice library path by passing the path to the libdevice library to the asin kernel.
def is_cuda():
return triton.runtime.driver.active.get_current_target().backend == "cuda"
def is_hip():
return triton.runtime.driver.active.get_current_target().backend == "hip"
current_file = inspect.getfile(inspect.currentframe())
current_dir = Path(os.path.dirname(os.path.abspath(current_file)))
if is_cuda():
libdir = current_dir.parent.parent / 'third_party/nvidia/backend/lib'
extern_libs = {'libdevice': str(libdir / 'libdevice.10.bc')}
elif is_hip():
libdir = current_dir.parent.parent / 'third_party/amd/backend/lib'
extern_libs = {}
libs = ["ocml", "ockl"]
for lib in libs:
extern_libs[lib] = str(libdir / f'{lib}.bc')
else:
raise RuntimeError('unknown backend')
output_triton = torch.empty_like(x)
asin_kernel[grid](x, output_triton, n_elements, BLOCK_SIZE=1024, extern_libs=extern_libs)
print(output_torch)
print(output_triton)
print(f'The maximum difference between torch and triton is '
f'{torch.max(torch.abs(output_torch - output_triton))}')
tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device='cuda:0')
tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device='cuda:0')
The maximum difference between torch and triton is 2.384185791015625e-07
Total running time of the script: (0 minutes 0.250 seconds)